Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Sep 2015)

Issues

Comparison of the variable potassium fertilization on light and heavy soils

Grzegorz Kulczycki
  • Corresponding author
  • Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences 50-375 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Przemyslaw Grocholski
  • Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences 50-375 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Stepien
  • Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences 50-375 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Michalski
  • Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences 50-375 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-10 | DOI: https://doi.org/10.1515/chem-2015-0130

Abstract

The present study aims to characterize the effect of the annual potassium variable rates fertilization (VRF) on the content of the soluble K, with this being investigated in both light and heavy soils. The study was performed between 2007 and 2013 in two separate areas differing in the soil texture classes. The initial levels of potassium determined in both experimental areas were classified as very high. The data obtained confirmed the positive effect of the variable fertilization techniques on the equalization of the K contents in the experimental fields, as determined by the decrease in the variance, standard deviation, and range of the elements content in both types of the soils studied. As assumed, the controlled withholding of fertilization applied in the early stages of the experiment resulted in a decrease of K content toward the preferred, medium to optimal, levels. In addition, we found that the progressive initiation of the potassium VRF on the experimental areas, to prevent an excessive decreases, resulted in earlier global adjustment of K contents in the light soils in contrast to the heavy ones, with the final spatial equalization being better in the latter, however.

Keywords : Variable rate fertilization (VRF); potassium; spatial variation; light soils; heavy soils

References

  • [1] Hawkesford M., Horst W., Kichey T., Lambers H., Schjoerring J., Moller S.I. et al., Functions of Macronutrients, Elsevier, San Diego USA, 2012. Google Scholar

  • [2] Andrist-Rangel Y., Simonsson M., Andersson S., Öborn I., Hillier S., Mineralogical budgeting of potassium in soil: A basis for understanding standard measures of reserve potassium, J. Plant Nutr. Soil Sci., 2006, 169, 605-615. Google Scholar

  • [3] Fotyma M., Content of potassium in different forms in the soils of southeast Poland, Pol. J. Soil Sci., 2007, 40, 19-32. Google Scholar

  • [4] Blake L., Mercik S., Koerschens M., Goulding K.W.T., Stempen S., Weigel A. et al., Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments, Plant Soil, 1999, 216, 1-14. Google Scholar

  • [5] Römheld V., Kirkby E., Research on potassium in agriculture: needs and prospects, Plant Soil, 2010, 335, 155-180. Google Scholar

  • [6] Havlin J.L., Tisdale S.L., Nelson W.L., Beaton J.D., Soil Fertility and Fertilizers: An Introduction to Nutrient Management, Pearson Education Inc, Prentice Hall New Jersey USA, 2004. Google Scholar

  • [7] Alfaro M.A., Jarvis S.C., Gregory P.J., Factors affecting potassium leaching in different soils, Soil Use Manage, 2004, 20, 182-189. Google Scholar

  • [8] Öborn I., Andrist-Rangel Y., Askekaard M., Grant C.A., Watson C.A., Edwards A.C., Critical aspects of potassium management in agricultural systems, Soil Use Manage, 2005, 21, 102-112. Google Scholar

  • [9] Egner H., Riehm H., Doppellaktatmethode, In: Thun R., Hersemann R., Knickmann E. (Eds.), Methodenbuch Band I. Die Untersuchung von Boden, Neumann Verlag, Radebeul Berlin, 1955. Google Scholar

  • [10] Wong D.W.S., Lee J., Statistical analysis of geographic information with ArcView GIS and ArcGIS, Wiley, Hoboken New Jersey, 2005. Google Scholar

  • [11] Krivoruchko K., Spatial Statistical Analysis for GIS Users, Esri Press, Redlands, California, USA, 2011. Google Scholar

  • [12] Franzen D.W., Collecting and analyzing soil spatial information using kriging and inverse distance, In: Clay D.E., Shanahan J.F. (Ed.), GIS applications in agriculture: nutrient management for energy efficiency, Taylor and Francis, New York, NY, USA, 2011. Google Scholar

  • [13] McBratney A.B., Pringle M.J., Estimating Average and Proportional Variograms of Soil Properties and Their Potential Use in Precision Agriculture, Precis. Agric., 1999, 1, 125-152. Google Scholar

  • [14] Havlin J.L., Heiniger R.W., A variable-rate decision support tool, Precis. Agric., 2009, 10, 356-369. Google Scholar

  • [15] Korsaeth A., Riley H., Estimation of economic and environmental potentials of variable rate versus uniform N fertilizer application to spring barley on morainic soils in SE Norway, Precis. Agric., 2006, 7, 265-279. Google Scholar

  • [16] Meyer-Aurich A., Gandorfer M., Heißenhuber A., Economic analysis of precision farming, In: Castalonge O.W. (Ed.), Agricultural Systems: Economics, Technology and Diversity Nova Science Publishers, Inc, 2008 Google Scholar

  • [17] Robertson M.J., Llewellyn R.S., Mandel R., Lawes R., Bramley R.G.V., Swift L. et al., Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects, Precis. Agric., 2012, 13, 181-199. Google Scholar

  • [18] Mc Lean E.O., Watson M.E., Soil Measurements of Plant-Available Potassium, In: Munson R.D., Cabot P.E. (Ed.), Potassium in Agriculture, ASA, CSSA, SSSA, 1985. Google Scholar

  • [19] Sawyer J.E., Concepts of Variable Rate Technology with Considerations for Fertilizer Application, J. Prod. Agric., 1994, 7, 195-201. CrossrefGoogle Scholar

  • [20] Stafford J.V., Implementing Precision Agriculture in the 21st Century, J. Agr. Eng. Res., 2000, 76, 267-275. Google Scholar

  • [21] Eckert D.J., Soil Test Interpretations: Basic Cation Saturation Ratios and Sufficiency Levels, In: Brown J.R. (Ed.), Soil Testing: Sampling, Correlation, Calibration, and Interpretation, SSSA, Madison, WI., 1987. Google Scholar

  • [22] Hergert G.W., Pan W.L., Huggins D.R., Grove J.H., Peck T.R., Adequacy of Current Fertilizer Recommendations for Site-Specific Management, In: Pierce F.J., E.J. S. (Ed.), The State of Site-Specific Management for Agriculture, 1997. Google Scholar

  • [23] Hodges S.C., Soil Fertility Basics: NC Certified Crop Advisor Training Soil Science Extension, North Carolina State University, 2008. Google Scholar

  • [24] Mallarino A.P., Wittry D.J., Variable-rate application for phosphorus and potassium: Impacts on yield and nutrient management, In: Proc. 18th Annual Integrated Crop Manag., (29-30 November 2006 Iowa State University, USA), Ames, IA, 2006, 219-224. Google Scholar

  • [25] Mulla D., McBratney A.B., Soil Spatial Variability, In: Warrick A.W. (Ed.), Soil Physics Companion, CRC Press, Boca Raton, FL, USA, 2002. Google Scholar

  • [26] Kulczycki G., Grocholski P., The effect of long-term phosphorus and potassium precision fertilization, In: Stafford J. (Ed.), Precision agriculture ’13, Wageningen Academic Publishers, 2013. Google Scholar

  • [27] Sparks D.L., Potassium Dynamics in Soils, In: Stewart B.A. (Ed.), Advances in Soil Science, Springer New York, 1987. Google Scholar

  • [28] Holthusen D., Peth S., Horn R., Impact of potassium concentration and matric potential on soil stability derived from rheological parameters, Soil and Tillage Research, 2010, 111, 75-85. Google Scholar

  • [29] Huang P.M., Chemistry of potassium in soils, In: Tabatabai M.A., Sparks D.L. (Ed.), Chemical Processes in Soils, Soil Science Society of America, 2005. Google Scholar

  • [30] Zörb C., Senbayram M., Peiter E., Potassium in agriculture – Status and perspectives, J. Plant Physiol., 2014, 171, 656-669. Web of ScienceGoogle Scholar

  • [31] Scott L., Janikas M., Spatial Statistics in ArcGIS, In: Fischer M.M., Getis A. (Ed.), Handbook of Applied Spatial Analysis, Springer Berlin Heidelberg, 2010. Google Scholar

  • [32] Yost R.S., Uehara G., Fox R.L., Geostatistical Analysis of Soil Chemical Properties of Large Land Areas. I. Semi-variograms1, Soil Sci. Soc. Am. J., 1982, 46, 1028-1032. Google Scholar

  • [33] Liu Q., Xie W.-j., Xia J.-b., Using Semivariogram and Moran‘s I Techniques to Evaluate Spatial Distribution of Soil Micronutrients, Commun. Soil Sci. Plant Anal., 2013, 44, 1182-1192. Web of ScienceGoogle Scholar

About the article

Received: 2015-04-10

Accepted: 2015-07-17

Published Online: 2015-09-10


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0130.

Export Citation

© 2015 Grzegorz Kulczycki et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in