Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Biofortification of maize grains with micronutrients by enriched biomass of blackcurrant seeds

Mateusz Samoraj
  • Corresponding author
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Łukasz Tuhy
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sylwia Baśladyńska
  • Corresponding author
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Chojnacka
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-19 | DOI: https://doi.org/10.1515/chem-2015-0133

Abstract

Effect of the application of blackcurrant seed post-extraction residues (BS) enriched via biosorption with Zn(II), Mn(II) and Cu(II) was examined in field tests on maize. As a nominal dose (100%), 2.5 kg of zinc, 1 kg of manganese and 0.5 kg of copper per hectare, were applied. The preparation was applied, also, in higher doses (150%, 200%).

Crop yield and quality were assessed and multielemental analysis of grains was conducted. Grain yield obtained for maize treated with different doses of micronutrients (7.3 and 7.2 Mg ha-1 for BS 100% and BS 200%, respectively) was higher than in control group (6.2 Mg ha-1) and similar to a commercial reference product (7.1 Mg ha-1).

Bioavailability of micronutrients from BS was shown to be higher than from reference commercial fertilizer. The highest content of micronutrients delivered to plants was observed for groups fertilized with BS in nominal dose of micronutrients (1.79, 7.08 and 28.55 mg kg-1 for Cu, Mn and Zn, respectively). The content of each micronutrient was 5.6% (Cu) 12.1% (Mn) and 12.6% (Zn) higher than in untreated group and 8.9% (Cu) 9.7% (Mn) and 8.7% (Zn) higher than commercial reference micronutrient fertilizer. New biocomponents are cheap and biodegradable carriers of nutrients which can be released in controlled way.

Graphical Abstract

Keywords : biosorption; utilization; field test; microelement fertilization; biocomponent

References

  • [1] Salem H., El-Gizawy N., Importance of micronutrients and its application methods for improving maize (Zea mays L.) yield grown in clayey soil, Am. Eurasian J. Agric. Environ. Sci., 2012, 2, 954-959. Google Scholar

  • [2] Ortiz-Monasterio J. I., Palacios-Rojas N., Meng E., Pixley K., Trethowan R., Pena R. J., Enhancing the mineral and vitamin content of wheat and maize through plant breeding, J. Cereal Sci. 2007, 46, 293-307. Web of ScienceGoogle Scholar

  • [3] Cakmak I., Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 2008, 302, 1-17. Web of ScienceGoogle Scholar

  • [4] Shi R., Zhang Y., Chen X., Sun Q., Zhang F., Römheld V., Zou C., Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.), J. Cereal Sci., 2010, 51, 165-170. Web of ScienceGoogle Scholar

  • [5] Hossain M. A., Jahiruddin M., Islam M. R., Mian M. H., The requirement of zinc for improvement of crop yield and mineral nutrition in the maize-mungbean-rice system , Plant Soil, 2008, 306, 13-22.0 Web of ScienceGoogle Scholar

  • [6] Harris D., Rashid A., Miraj G., Arif M., Shah H., ‘On-farm’seed priming with zinc sulphate solution - A cost-effective way to increase the maize yields of resource-poor farmers , Field Crop Res., 2007, 102, 119-127. Web of ScienceGoogle Scholar

  • [7] Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R. P., Biofortification strategies to increase grain zinc and iron concentrations in wheat, J. Cereal Sci., 2014, 59, 365-372. Web of ScienceGoogle Scholar

  • [8] Hussain S., Maqsood M. A., Rengel Z., Aziz T., Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application, Plant Soil, 2012, 361, 279-290. Web of ScienceGoogle Scholar

  • [9] Murakami T., Nishikiori T., Nohira T., Ito Y., Electrolytic synthesis of ammonia in molten salts under atmospheric pressure, J. Am. Chem. Soc., 2003, 125, 334-335. Google Scholar

  • [10] Jie M., Raza W., Xu Y. C., Shen Q. R., Preparation and optimization of amino acid chelated micronutrient fertilizer by hydrolyzation of chicken waste feathers and the effects on growth of rice, J. Plant Nutr., 2008, 31, 571-582. Web of ScienceGoogle Scholar

  • [11] Zhong W., Gu T., Wang W., Zhang B., Lin X., Huang Q., Shen W., The effects of mineral fertilizer and organic manure on soil microbial community and diversity, Plant Soil, 2010, 326, 511-522. Web of ScienceGoogle Scholar

  • [12] Chojnacka K., Biosorption and bioaccumulation-the prospects for practical applications, Environ. Int., 2010, 36, 299-307. Web of ScienceGoogle Scholar

  • [13] Pennesi C., Totti C., Beolchini F., Removal of Vanadium (III) and Molybdenum (V) from Wastewater Using Posidonia oceanica (Tracheophyta) Biomass, Plos One, 2013, 8, 1-11. Google Scholar

  • [14] Sulaymon A., Ebrahim S., Mohammed-Ridha M., Equilibrium, kinetic, and thermodynamic biosorption of Pb (II), Cr (III), and Cd (II) ions by dead anaerobic biomass from synthetic wastewater, Environ. Sci. Pol. Res., 2013, 20, 175-187. CrossrefGoogle Scholar

  • [15] Kostić M., Radović M., Mitrović J., Antonijević M., Bojić D., Petrović M., Bojić A., Using xanthated Lagenaria vulgaris shell biosorbent for removal of Pb (II) ions from wastewater, J. Iran Chem. Soc., 2014, 11, 565-578. CrossrefWeb of ScienceGoogle Scholar

  • [16] Saeid A., Chojnacka K., Korczyński M., Korniewicz D., Dobrzański Z., Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine, J. Appl. Phycol., 2012, 25, 667-675. Web of ScienceCrossrefGoogle Scholar

  • [17] Witkowska Z., Chojnacka K., Korczyński M., Świniarska M., Saeid A., Opaliński S., Dobrzański Z., Soybean meal enriched with microelements by biosorption-A new biological feed supplement for laying hens. Part I. Performance and egg traits, Food Chem., 2014, 151, 86-92. Web of ScienceGoogle Scholar

  • [18] Michalak I., Tuhy Ł., Saeid A., Chojnacka K., Bioavailability of Zn (II) to Plants from new Fertilizer Components Produced by Biosorption, Int. J. Agron. Plant Prod., 2013, 4, 3522-3536. Google Scholar

  • [19] Witkowska Z.., Chojnacka K., Michalak I., Application of Biosorption in the Production of Innovative Feed Supplements: A Novel Method, Ads. Sci. Technol., 2013, 31, 421-432. Google Scholar

  • [20] Danaher R. J., Wang C., Dai J., Mumper R. J., Miller C. S., Antiviral effects of blackberry extract against herpes simplex virus type 1, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112, 31-35. Google Scholar

  • [21] Costa A. G. V., Garcia-Diaz D. F., Jimenez P., Silva P. I., Bioactive compounds and health benefits of exotic tropical red-black berries, J. Funct. Foods., 2013, 5, 539-549. Web of ScienceGoogle Scholar

  • [22] Chojnacka K., The application of multielemental analysis in the elaboration of technology of mineral feed additives based on Lemna minor biomass, Talanta, 2006, 70, 966-972. Google Scholar

  • [23] Polish Journal of Laws ,2008, no. 119, pos. 765. Google Scholar

  • [24] Tuhy L., Samoraj M., Chojnacka K., Evaluation of nutrients bioavailability from fertilizers in in vivo tests, Int. J. Eng. Sci. 2013, 1, 10-13. Google Scholar

  • [25] Bameri M., Abdolshahi R., Mohammadi-Nejad G., Yousefi K., Tabatabaie S. M., Effect of different microelement treatment on wheat (Triticum aestivum) growth and yield, Int. Res. J. Applied Basic Sci., 2012, 3, 219-223. Google Scholar

  • [26] Rahman I. U., Afzal A., Iqbal Z., Manan S., Foliar Application of Plant Mineral Nutrients on Wheat: A Review, J. Agric. Appl. Sci., 2014, 3, 19-22. Google Scholar

  • [27] Pagani A., Echeverría H. E., Andrade F. H., Sainz Rozas H. R., Effects of nitrogen and sulfur application on grain yield, nutrient accumulation, and harvest indexes in maize, J. Plant Nutr., 2012, 35, 1080-1097. Web of ScienceGoogle Scholar

  • [28] Lungu O.I., Simunji S., Cakmak I., Effects of Soil and Foliar Applications of Zinc on Grain Zinc Concentrations of Maize, Sorghum and Wheat in Zambia, INTSORMIL Scientific Publications. 2011, 43. Google Scholar

  • [29] Manzeke G. M., Mtambanengwe F., Nezomba H., Mapfumo P., Zinc fertilization influence on maizeproductivity and grain nutritional quality under integrated soil fertility management in Zimbabwe, Field Crops Res., 2014, DOI:10.1016/j.fcr.2014.05.019. CrossrefGoogle Scholar

  • [30] Zhang Y., Pang L., Yan P., Liu D., Zhang W., Yost R., Zhang F., Zou C., Zinc fertilizer placement affects zinc content in maize plant, Plant Soil, 2013, 372, 81-92. Web of ScienceGoogle Scholar

  • [31] Ortas I., Lal R., Long-term fertilization effect on agronomic yield and soil organic carbon under semi-arid Mediterranean region, Am. J. Exp. Agric., 2014, 4, 1086-1102. CrossrefGoogle Scholar

About the article

Received: 2015-01-20

Accepted: 2015-08-04

Published Online: 2015-10-19


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0133.

Export Citation

© 2015 Mateusz Samoraj et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in