Jump to ContentJump to Main Navigation
Show Summary Details

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2015: 1.207
5-year IMPACT FACTOR: 1.272

SCImago Journal Rank (SJR) 2015: 0.346
Source Normalized Impact per Paper (SNIP) 2015: 0.841
Impact per Publication (IPP) 2015: 1.164

Open Access
See all formats and pricing

Select Volume and Issue


Antioxidant properties of fruits of raspberry and blackberry grown in central Europe

Anna Kostecka-Gugała1 / Iwona Ledwożyw-Smoleń1 / Joanna Augustynowicz2 / Gabriela Wyżgolik2 / Michał Kruczek1 / Paweł Kaszycki1

1Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow; al. 29 Listopada 54, 31-425 Krakow, Poland

2Department of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland

© 2015 Anna Kostecka-Gugała et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Chemistry. Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: 10.1515/chem-2015-0143, November 2015

Publication History

Published Online:


Fruits of several, mainly Polish cultivars of floricane- and primocane-fruiting red raspberry (Rubus idaeus), black raspberry (Rubus occidentalis) and blackberry (Rubus fruticosus), grown in central Europe during two successive vegetation periods, were investigated. The content of phenolic compounds, including anthocyanins, as well as antioxidant properties of fruit extracts were analysed. A number of methods were employed: ferric ion reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity involving both colorimetric and EPR spectrometric measurements. From among all the tested fruits black raspberries had the largest antioxidant capacity as verified by all methods used in this study. These berries were also the most abundant in phenolic and anthocyanin compounds. Blackberries were characterised by larger antioxidant capacity than red raspberry fruits which were accompanied by higher content of total phenolics and anthocyanins. Berries of primocane-fruiting cultivars, often used for intensive agricultural production, generally did not differ in the total phenolic and anthocyanin content as well as in the antioxidant capacity as compared to the traditional, floricane-fruiting ones. The research contributes to deep characterisation of central European berry fruits which due to their high content and large diversity of health-beneficial compounds are classified as natural functional food.

Graphical Abstract

Keywords : raspberry; blackberry; black raspberry; antioxidant; phenolic content


  • [1] Pritts M., Primocane-fruiting Raspberry Production, HortScience, 2008, 43, 1640-1641.

  • [2] Boivin D., Blanchette M., Barrette S., Moghrabi A., Beliveau R., Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFkB by edible berry juice, Anticancer Res., 2007, 27, 937-948.

  • [3] Bowen-Forbes C.S., Zhang Y., Nair M.G., Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits, J. Food Comp. Anal., 2010, 23, 554-560. [CrossRef]

  • [4] Wieniarska J., Szember E., Żmuda E., Murawska D., Porównanie składu chemicznego owoców wybranych odmian maliny Rubus idaeus L. Comparison of Chemical Composition of Fruit in Chosen Raspberry Cultivars Rubus idaeus L., Ann.UMCS, 2005, E, 15, 29-33, (in Polish).

  • [5] Rao A.V., Snyder D.M., Raspberries and Human Health: A Review., J. Agric. Food Chem., 2010, 58, 3871-3883. [CrossRef]

  • [6] Landete J.M., Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health, Food Res. Int., 2011, 44, 1150-1160. [CrossRef]

  • [7] Kolniak-Ostek J., Kucharska A.Z., Sokół-Łętowska A., Fecka I., Characterization of Phenolic Compounds of Thorny and Thornless Blackberries, J. Agr. Food Chem., 2015, 63, 3012-3021. [CrossRef]

  • [8] Fan-Chiang H., Wrolstad R., Anthocyanin pigment composition of blackberries, J. Food Sci., 2005, 70, C198-C202.

  • [9] Lee J., Dossett M., Finn C.E., Rubus fruit phenolics research: The good, the bad, and the confusing, Food Chem., 2012, 130, 785-796.

  • [10] Macierzyński J., Buczek M., Zawieracz W., Król B., Skład polifenolowy owoców jeżyny Rubus fruticosus, Polyphenolic composition of Rubus fruticosus blackberry fruits ŻYWNOŚĆ. Nauka. Technologia. Jakość, 2014, 5 (96), 183-194, (in Polish).

  • [11] Määttä-Riihinen K.R., Kamal-Eldin A., Törrönen A.R., Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family Rosaceae), J. Agric. Food Chem., 2004, 52, 6178-6187. [CrossRef]

  • [12] Majdan M., Badania składu chemicznego Rubus idaeus i Rubus occidentalis z uwzględnieniem aktywności farmakologicznej, PhD thesis, Medical University of Gdańsk, Gdańsk, Poland, 2013, (in Polish).

  • [13] Mazur S.P., Nes A., Wold A.-B., Remberg S.F., Aaby K., Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons, Food Chem., 2014, 160, 233-240.

  • [14] Tian Q., Giusti M.M., Stoner G.D., Schwartz S.J., Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry, Food Chem., 2006, 94, 465-468. [CrossRef]

  • [15] Zhang Z., Knobloch T.J, Seamon L.G., Stoner G.D., Cohn D.E., Paskett E.D., et al., A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells, Gynecol. Oncol., 2011, 123, 401-406.

  • [16] Medda R., Lyros O., Schmidt J.L., Jovanovic N., Nie L., Link B.J., et al., Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells, Microvasc. Res., 2015, 97, 167-180. [CrossRef]

  • [17] McDougall G.J., Shapiro F., Dobson P., Smith P., Blake A., Stewart D., Different polyphenolic components of soft fruits inhibit α-amylase and α-glycosidase, J. Agric. Food Chem., 2005, 53, 2760-2766. [CrossRef]

  • [18] Jayaprakasam B., Vareed S.K., Olson L.K., Nair M.G., Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits, J. Agric. Food Chem., 2005, 53, 28-31. [CrossRef]

  • [19] Tsuda T., Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome, J. Agric. Food Chem., 2008, 56, 642-646. [CrossRef]

  • [20] Kaume L., Gilbert W.C., Brownmiller C., Howard L.R., Devareddy L., Cyanidin 3-O-β-D-glucoside-rich blackberries modulate hepatic gene expression, and anti-obesity effects in ovariectomized rats, J. Funct. Foods 2012, 4, 480-488.

  • [21] Ross H.A., McDougall G.J., Steward D., Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts, Phytochemistry, 2007, 68, 218-228. [CrossRef]

  • [22] Edderkaoui M., Odinokova I., Ohno I., Gukovsky I., Go V.L.W., Pandol S.J., et al., Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells, World J. Gastroenterol., 2008, 14, 3672-3680.

  • [23] Liu Z., Schwimer J., Liu D., Greenway F.L., Anthony C.T., Woltering E.A., Black raspberry extract and fractions containing angiogenesis inhibitors, J. Agric. Food Chem., 2005, 53, 3909-3915. [CrossRef]

  • [24] Huang C., Li J., Song L., Zhang D., Tong Q., Ding M., et al., Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphatidylinositol 3-kinase/Akt pathway, Cancer Res., 2006, 66, 581-587.

  • [25] Puupponen-Pimiä R., Nohynek L., Hartmann-Schmidlin S., Kähkönen M., Heinonen M., Maatta-Riihinen K., Berry phenolics selectively inhibit the growth of intestinal pathogens., J. Appl. Microbiol., 2005, 98, 991-1000. [CrossRef]

  • [26] Nohynek L.J., Alakomi H.-L., Kahkonen M.P., Heinonen M., Helander I.M., Oksman-Caldentey K.-M., et al., Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens, Nutr. Cancer, 2006, 54, 18-32. [CrossRef]

  • [27] Nikolaeva-Glomb L., Mukova L., Nikolova N., Badjakov I., Dincheva I., Kondakova V., et al., In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae, Nat. Prod. Commun., 2014, 9, 51-54.

  • [28] Pantelidis G.E., Vasilakakis M., Manganaris G.A., Diamantidis G.R., Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries, Food Chem., 2007, 102, 777-783. [CrossRef]

  • [29] Chen L., Xin X., Zhang H., Yuan Q., Phytochemical properties and antioxidant capacities of commercial raspberry varieties, J. Funct. Foods, 2013, 5, 508-515. [CrossRef]

  • [30] Dragišić Maksimović J.J., Milivojević J.M., Poledica M.M., Nikolić M.D., Maksimović V.M., Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka), 2013, J. Food Comp. Anal., 31, 173-179. [CrossRef]

  • [31] Wang S.Y., Lin H.S., Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage, J. Agric. Food Chem., 2000, 48, 140-146. [CrossRef]

  • [32] Bobinaitė R. Viškelis P., Venskutonis P.R., Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars, Food Chem., 2012, 132, 1495-1501.

  • [33] Fukumoto L., Mazza G., Assessing antioxidant and prooxidant activities of phenolic compounds, J. Agric. Food Chem., 2000, 48, 3597-3604. [CrossRef]

  • [34] Benzie I.F.F., Strain J.J., The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay, Anal. Biochem., 1996, 239, 70-76.

  • [35] Apak R, Güclü K., Özyürek M., Esin Karademir S., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem., 2004, 52, 7970-7981. [CrossRef]

  • [36] Brand-Williams W., Cuvelier M.E., Berset C., Use of a Free Radical Method to Evaluate Antioxidant Activity, LWT – Food Sci. Technol., 1995, 28, 25-30. [CrossRef]

  • [37] Pekkarinen S.S., Stoeckmann H., Schwarz K., Heinonen I.M., Hopia A.I,. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate, J. Agric. Food Chem., 1999, 47, 3036-3043. [CrossRef]

  • [38] Owen A.J., Good Laboratory Practice with a UV-Visible Spectroscopy System. Application Note, Hewlett-Packard Company, Waldbronn, Germany, 1995.

  • [39] Anttonen M.J., Karjalainen R.O. Environmental and genetic variation of phenolic compounds in red raspberry, J. Food Comp. Anal., 2005, 18, 759-769. [CrossRef]

  • [40] Weber C.A., Perkins-Veazie P., Moore P.P., Howard L., Variability of antioxidant content in raspberry germplasm, Acta Hortic. (ISHS), 2008, 777, 493-498.

  • [41] Kähkönen M.P., Hopia A.I., Heinonen M., Berry phenolics and their antioxidant activity, J. Agric. Food Chem., 2001, 49, 4076-4082. [CrossRef]

  • [42] Koponen J.M., Happonen A.M., Mattila P.H., Törrönen, A.R. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland, J. Agric. Food Chem., 2007, 55, 1612-1619. [CrossRef]

  • [43] Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins Byrne D., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Comp. Anal., 2006, 19, 669-675. [CrossRef]

  • [44] Çekiç Ç., Őzgen M., Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.), J. Food Comp. Anal., 2010, 23, 540-544. [CrossRef]

  • [45] Sariburun E., Şahin S., Demir C., Türkben C., Uylaşer V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars, J. Food Sci., 2010, 75, 328-335.

  • [46] Augustynowicz J., Dlugosz-Grochowska O.G., Kostecka-Gugala, A.M., Leja M., Kruczek M.K, Świderski A., Callitriche cophocarpa – a new rich source of active phenolic compounds, Cent. Eur. J. Chem., 2014, 12, 519-527. [CrossRef]

  • [47] Augustynowicz J., Kolton A.M., Baran A.M., Kostecka-Gugala A.M., Lasek W., Strategy of Cr detoxification by Callitriche cophocarpa, Cent. Eur. J. Chem., 2013, 11, 295-303.

  • [48] McCarty M.F., Proposal for a dietary “phytochemical index”, Med. Hypotheses, 2004, 63, 813-817. [CrossRef]

  • [49] Beekwilder J., Hall R.D., Ric de Vos, C.H., Identification and dietary relevance of antioxidants from raspberry, BioFactors, 2005, 23, 197-205. [CrossRef]

  • [50] Işik E., Şahin S., Demir C., Tükben C., Determination of total phenolic content of raspberry and blackberry cultivars by immobilized horseradish peroxidase bioreactor, J. Food Comp. Anal., 2011, 24, 944-949. [CrossRef]

  • [51] Burrows C., Moore P.P., Genotype × environment effects on raspberry fruit quality, Acta Hortic., 2002, 585(2), 467-473.

  • [52] Danek J., Markowski J., Skład chemiczny owoców wybranych genotypów maliny jako element hodowli jakościowej. Fruit chemical component select genotypes of raspberries in relation to breeding for fruit quality, Folia Hort., 2003, supl. 2, 397-399, (in Polish).

  • [53] Wada L, Ou B., Antioxidant activity and phenolic content of Oregon caneberries, J. Agric. Food Chem. 2002, 50, 3495-3500. [CrossRef]

  • [54] Carvalho E., Fraser P.D., Martens S., Carotenoids and tocopherols in yellow and red raspberries, Food Chem., 2013, 139, 744-752.

  • [55] Liu M., Li X.Q., Weber C., Lee C.Y., Brown J., Liu R.H., Antioxidant and Antiproliferative Activities of Raspberries, J. Agric. Food Chem., 2002, 50, 2926-2930. [CrossRef]

  • [56] Kalt W., Forney C.F., Martin A., Prior R.L., Antioxidant capacity, vitamin C, phenolics, and anthocyanins bioconstituents determining tea quality, J. Agric Food Chem., 1999, 47, 4638-4644. [CrossRef]

  • [57] Reyes-Carmona J., Yousef G.G., Martinez-Peniche R.A., Lila, M.A., Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions, J. Food Sci., 2005, 70, S497-S503. [CrossRef]

  • [58] Acosta-Montoya Ó., Vaillant F., Cozzano S., Mertz C., Pérez A.M., Castro M.V., Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages, Food Chem., 2010, 119, 1497-1501.

  • [59] Kim H.-S., Park S.J., Hyun S.H., Yang S.-O., Lee J., Auh J.-H., Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by 1H NMR using multiple solvent systems, Food Res. Int., 2011, 44, 1977-1987. [CrossRef]

  • [60] Wang S.Y., Chen C.-T., Wang C.Y., The influence of light and maturity on fruit quality and flavonoid content of red raspberries, Food Chem., 2009, 112, 676-684. [CrossRef]

Comments (0)

Please log in or register to comment.