Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Antioxidant properties of fruits of raspberry and blackberry grown in central Europe

Anna Kostecka-Gugała
  • Corresponding author
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow; al. 29 Listopada 54, 31-425 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iwona Ledwożyw-Smoleń
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow; al. 29 Listopada 54, 31-425 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Augustynowicz
  • Corresponding author
  • Department of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriela Wyżgolik
  • Department of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michał Kruczek
  • Corresponding author
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow; al. 29 Listopada 54, 31-425 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Kaszycki
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow; al. 29 Listopada 54, 31-425 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/chem-2015-0143


Fruits of several, mainly Polish cultivars of floricane- and primocane-fruiting red raspberry (Rubus idaeus), black raspberry (Rubus occidentalis) and blackberry (Rubus fruticosus), grown in central Europe during two successive vegetation periods, were investigated. The content of phenolic compounds, including anthocyanins, as well as antioxidant properties of fruit extracts were analysed. A number of methods were employed: ferric ion reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity involving both colorimetric and EPR spectrometric measurements. From among all the tested fruits black raspberries had the largest antioxidant capacity as verified by all methods used in this study. These berries were also the most abundant in phenolic and anthocyanin compounds. Blackberries were characterised by larger antioxidant capacity than red raspberry fruits which were accompanied by higher content of total phenolics and anthocyanins. Berries of primocane-fruiting cultivars, often used for intensive agricultural production, generally did not differ in the total phenolic and anthocyanin content as well as in the antioxidant capacity as compared to the traditional, floricane-fruiting ones. The research contributes to deep characterisation of central European berry fruits which due to their high content and large diversity of health-beneficial compounds are classified as natural functional food.

Graphical Abstract

Keywords : raspberry; blackberry; black raspberry; antioxidant; phenolic content


  • [1] Pritts M., Primocane-fruiting Raspberry Production, HortScience, 2008, 43, 1640-1641. Google Scholar

  • [2] Boivin D., Blanchette M., Barrette S., Moghrabi A., Beliveau R., Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFkB by edible berry juice, Anticancer Res., 2007, 27, 937-948. Google Scholar

  • [3] Bowen-Forbes C.S., Zhang Y., Nair M.G., Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits, J. Food Comp. Anal., 2010, 23, 554-560. CrossrefGoogle Scholar

  • [4] Wieniarska J., Szember E., Żmuda E., Murawska D., Porównanie składu chemicznego owoców wybranych odmian maliny Rubus idaeus L. Comparison of Chemical Composition of Fruit in Chosen Raspberry Cultivars Rubus idaeus L., Ann.UMCS, 2005, E, 15, 29-33, (in Polish). Google Scholar

  • [5] Rao A.V., Snyder D.M., Raspberries and Human Health: A Review., J. Agric. Food Chem., 2010, 58, 3871-3883. CrossrefGoogle Scholar

  • [6] Landete J.M., Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health, Food Res. Int., 2011, 44, 1150-1160. CrossrefGoogle Scholar

  • [7] Kolniak-Ostek J., Kucharska A.Z., Sokół-Łętowska A., Fecka I., Characterization of Phenolic Compounds of Thorny and Thornless Blackberries, J. Agr. Food Chem., 2015, 63, 3012-3021. CrossrefGoogle Scholar

  • [8] Fan-Chiang H., Wrolstad R., Anthocyanin pigment composition of blackberries, J. Food Sci., 2005, 70, C198-C202. Google Scholar

  • [9] Lee J., Dossett M., Finn C.E., Rubus fruit phenolics research: The good, the bad, and the confusing, Food Chem., 2012, 130, 785-796. Google Scholar

  • [10] Macierzyński J., Buczek M., Zawieracz W., Król B., Skład polifenolowy owoców jeżyny Rubus fruticosus, Polyphenolic composition of Rubus fruticosus blackberry fruits ŻYWNOŚĆ. Nauka. Technologia. Jakość, 2014, 5 (96), 183-194, (in Polish). Google Scholar

  • [11] Määttä-Riihinen K.R., Kamal-Eldin A., Törrönen A.R., Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family Rosaceae), J. Agric. Food Chem., 2004, 52, 6178-6187. CrossrefGoogle Scholar

  • [12] Majdan M., Badania składu chemicznego Rubus idaeus i Rubus occidentalis z uwzględnieniem aktywności farmakologicznej, PhD thesis, Medical University of Gdańsk, Gdańsk, Poland, 2013, (in Polish). Google Scholar

  • [13] Mazur S.P., Nes A., Wold A.-B., Remberg S.F., Aaby K., Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons, Food Chem., 2014, 160, 233-240. Google Scholar

  • [14] Tian Q., Giusti M.M., Stoner G.D., Schwartz S.J., Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry, Food Chem., 2006, 94, 465-468. CrossrefGoogle Scholar

  • [15] Zhang Z., Knobloch T.J, Seamon L.G., Stoner G.D., Cohn D.E., Paskett E.D., et al., A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells, Gynecol. Oncol., 2011, 123, 401-406. Google Scholar

  • [16] Medda R., Lyros O., Schmidt J.L., Jovanovic N., Nie L., Link B.J., et al., Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells, Microvasc. Res., 2015, 97, 167-180. CrossrefGoogle Scholar

  • [17] McDougall G.J., Shapiro F., Dobson P., Smith P., Blake A., Stewart D., Different polyphenolic components of soft fruits inhibit α-amylase and α-glycosidase, J. Agric. Food Chem., 2005, 53, 2760-2766. CrossrefGoogle Scholar

  • [18] Jayaprakasam B., Vareed S.K., Olson L.K., Nair M.G., Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits, J. Agric. Food Chem., 2005, 53, 28-31. CrossrefGoogle Scholar

  • [19] Tsuda T., Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome, J. Agric. Food Chem., 2008, 56, 642-646. CrossrefGoogle Scholar

  • [20] Kaume L., Gilbert W.C., Brownmiller C., Howard L.R., Devareddy L., Cyanidin 3-O-β-D-glucoside-rich blackberries modulate hepatic gene expression, and anti-obesity effects in ovariectomized rats, J. Funct. Foods 2012, 4, 480-488. Google Scholar

  • [21] Ross H.A., McDougall G.J., Steward D., Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts, Phytochemistry, 2007, 68, 218-228. CrossrefGoogle Scholar

  • [22] Edderkaoui M., Odinokova I., Ohno I., Gukovsky I., Go V.L.W., Pandol S.J., et al., Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells, World J. Gastroenterol., 2008, 14, 3672-3680. Google Scholar

  • [23] Liu Z., Schwimer J., Liu D., Greenway F.L., Anthony C.T., Woltering E.A., Black raspberry extract and fractions containing angiogenesis inhibitors, J. Agric. Food Chem., 2005, 53, 3909-3915. CrossrefGoogle Scholar

  • [24] Huang C., Li J., Song L., Zhang D., Tong Q., Ding M., et al., Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphatidylinositol 3-kinase/Akt pathway, Cancer Res., 2006, 66, 581-587. Google Scholar

  • [25] Puupponen-Pimiä R., Nohynek L., Hartmann-Schmidlin S., Kähkönen M., Heinonen M., Maatta-Riihinen K., Berry phenolics selectively inhibit the growth of intestinal pathogens., J. Appl. Microbiol., 2005, 98, 991-1000. CrossrefGoogle Scholar

  • [26] Nohynek L.J., Alakomi H.-L., Kahkonen M.P., Heinonen M., Helander I.M., Oksman-Caldentey K.-M., et al., Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens, Nutr. Cancer, 2006, 54, 18-32. CrossrefGoogle Scholar

  • [27] Nikolaeva-Glomb L., Mukova L., Nikolova N., Badjakov I., Dincheva I., Kondakova V., et al., In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae, Nat. Prod. Commun., 2014, 9, 51-54. Google Scholar

  • [28] Pantelidis G.E., Vasilakakis M., Manganaris G.A., Diamantidis G.R., Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries, Food Chem., 2007, 102, 777-783. CrossrefGoogle Scholar

  • [29] Chen L., Xin X., Zhang H., Yuan Q., Phytochemical properties and antioxidant capacities of commercial raspberry varieties, J. Funct. Foods, 2013, 5, 508-515. CrossrefGoogle Scholar

  • [30] Dragišić Maksimović J.J., Milivojević J.M., Poledica M.M., Nikolić M.D., Maksimović V.M., Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka), 2013, J. Food Comp. Anal., 31, 173-179. CrossrefGoogle Scholar

  • [31] Wang S.Y., Lin H.S., Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage, J. Agric. Food Chem., 2000, 48, 140-146. CrossrefGoogle Scholar

  • [32] Bobinaitė R. Viškelis P., Venskutonis P.R., Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars, Food Chem., 2012, 132, 1495-1501. Google Scholar

  • [33] Fukumoto L., Mazza G., Assessing antioxidant and prooxidant activities of phenolic compounds, J. Agric. Food Chem., 2000, 48, 3597-3604. CrossrefGoogle Scholar

  • [34] Benzie I.F.F., Strain J.J., The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay, Anal. Biochem., 1996, 239, 70-76. Google Scholar

  • [35] Apak R, Güclü K., Özyürek M., Esin Karademir S., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem., 2004, 52, 7970-7981. CrossrefGoogle Scholar

  • [36] Brand-Williams W., Cuvelier M.E., Berset C., Use of a Free Radical Method to Evaluate Antioxidant Activity, LWT – Food Sci. Technol., 1995, 28, 25-30. CrossrefGoogle Scholar

  • [37] Pekkarinen S.S., Stoeckmann H., Schwarz K., Heinonen I.M., Hopia A.I,. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate, J. Agric. Food Chem., 1999, 47, 3036-3043. CrossrefGoogle Scholar

  • [38] Owen A.J., Good Laboratory Practice with a UV-Visible Spectroscopy System. Application Note, Hewlett-Packard Company, Waldbronn, Germany, 1995. Google Scholar

  • [39] Anttonen M.J., Karjalainen R.O. Environmental and genetic variation of phenolic compounds in red raspberry, J. Food Comp. Anal., 2005, 18, 759-769. CrossrefGoogle Scholar

  • [40] Weber C.A., Perkins-Veazie P., Moore P.P., Howard L., Variability of antioxidant content in raspberry germplasm, Acta Hortic. (ISHS), 2008, 777, 493-498. Google Scholar

  • [41] Kähkönen M.P., Hopia A.I., Heinonen M., Berry phenolics and their antioxidant activity, J. Agric. Food Chem., 2001, 49, 4076-4082. CrossrefGoogle Scholar

  • [42] Koponen J.M., Happonen A.M., Mattila P.H., Törrönen, A.R. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland, J. Agric. Food Chem., 2007, 55, 1612-1619. CrossrefGoogle Scholar

  • [43] Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins Byrne D., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Comp. Anal., 2006, 19, 669-675. CrossrefGoogle Scholar

  • [44] Çekiç Ç., Őzgen M., Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.), J. Food Comp. Anal., 2010, 23, 540-544. CrossrefGoogle Scholar

  • [45] Sariburun E., Şahin S., Demir C., Türkben C., Uylaşer V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars, J. Food Sci., 2010, 75, 328-335. Google Scholar

  • [46] Augustynowicz J., Dlugosz-Grochowska O.G., Kostecka-Gugala, A.M., Leja M., Kruczek M.K, Świderski A., Callitriche cophocarpa – a new rich source of active phenolic compounds, Cent. Eur. J. Chem., 2014, 12, 519-527. CrossrefGoogle Scholar

  • [47] Augustynowicz J., Kolton A.M., Baran A.M., Kostecka-Gugala A.M., Lasek W., Strategy of Cr detoxification by Callitriche cophocarpa, Cent. Eur. J. Chem., 2013, 11, 295-303. Google Scholar

  • [48] McCarty M.F., Proposal for a dietary “phytochemical index”, Med. Hypotheses, 2004, 63, 813-817. CrossrefGoogle Scholar

  • [49] Beekwilder J., Hall R.D., Ric de Vos, C.H., Identification and dietary relevance of antioxidants from raspberry, BioFactors, 2005, 23, 197-205. CrossrefGoogle Scholar

  • [50] Işik E., Şahin S., Demir C., Tükben C., Determination of total phenolic content of raspberry and blackberry cultivars by immobilized horseradish peroxidase bioreactor, J. Food Comp. Anal., 2011, 24, 944-949. CrossrefGoogle Scholar

  • [51] Burrows C., Moore P.P., Genotype × environment effects on raspberry fruit quality, Acta Hortic., 2002, 585(2), 467-473. Google Scholar

  • [52] Danek J., Markowski J., Skład chemiczny owoców wybranych genotypów maliny jako element hodowli jakościowej. Fruit chemical component select genotypes of raspberries in relation to breeding for fruit quality, Folia Hort., 2003, supl. 2, 397-399, (in Polish). Google Scholar

  • [53] Wada L, Ou B., Antioxidant activity and phenolic content of Oregon caneberries, J. Agric. Food Chem. 2002, 50, 3495-3500. CrossrefGoogle Scholar

  • [54] Carvalho E., Fraser P.D., Martens S., Carotenoids and tocopherols in yellow and red raspberries, Food Chem., 2013, 139, 744-752. Google Scholar

  • [55] Liu M., Li X.Q., Weber C., Lee C.Y., Brown J., Liu R.H., Antioxidant and Antiproliferative Activities of Raspberries, J. Agric. Food Chem., 2002, 50, 2926-2930. CrossrefGoogle Scholar

  • [56] Kalt W., Forney C.F., Martin A., Prior R.L., Antioxidant capacity, vitamin C, phenolics, and anthocyanins bioconstituents determining tea quality, J. Agric Food Chem., 1999, 47, 4638-4644. CrossrefGoogle Scholar

  • [57] Reyes-Carmona J., Yousef G.G., Martinez-Peniche R.A., Lila, M.A., Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions, J. Food Sci., 2005, 70, S497-S503. CrossrefGoogle Scholar

  • [58] Acosta-Montoya Ó., Vaillant F., Cozzano S., Mertz C., Pérez A.M., Castro M.V., Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages, Food Chem., 2010, 119, 1497-1501. Google Scholar

  • [59] Kim H.-S., Park S.J., Hyun S.H., Yang S.-O., Lee J., Auh J.-H., Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by 1H NMR using multiple solvent systems, Food Res. Int., 2011, 44, 1977-1987. CrossrefGoogle Scholar

  • [60] Wang S.Y., Chen C.-T., Wang C.Y., The influence of light and maturity on fruit quality and flavonoid content of red raspberries, Food Chem., 2009, 112, 676-684. CrossrefGoogle Scholar

About the article

Received: 2015-01-31

Accepted: 2015-10-09

Published Online: 2015-11-26

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0143.

Export Citation

© 2015 Anna Kostecka-Gugała et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Youri Joh, Niels Maness, and William McGlynn
International Journal of Food Science, 2017, Volume 2017, Page 1
Bincy Baby, Priya Antony, and Ranjit Vijayan
Critical Reviews in Food Science and Nutrition, 2017, Page 1
Dipayan Sarkar, Jordan Orwat, Tim Hurburt, Floyd Woods, James A. Pitts, and Kalidas Shetty
Scientia Horticulturae, 2016, Volume 212, Page 193

Comments (0)

Please log in or register to comment.
Log in