Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

New feed supplement from macroalgae as the dietary source of microelements for pigs

Izabela Michalak
  • Corresponding author
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Chojnacka
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Korniewicz
Published Online: 2016-01-18 | DOI: https://doi.org/10.1515/chem-2015-0149

Abstract

The aim of the study was to perform feeding experiments on growing pigs in order to assess the impact of macroalga Enteromorpha sp. enriched with Zn(II) and Cu(II) ions via the biosorption process on the mineral composition of blood, meat, liver, feces and urine. In the control group, microelements were supplemented as inorganic salts, whereas in the experimental groups they were replaced by enriched macroalga. After 3 months of the feeding experiment, it was found that the meat was biofortified with Cr, Mn, Fe, Cu and Zn. The average content of Zn in the blood from the pigs fed with algae was higher by 9.5%, compared to that in the blood from pigs in the control group. The liver of growing pigs from the experimental group contained 16% less Cu and 18% less Zn than the liver in the control group. Growing pigs fed with macroalgae excreted in feces 27% more Zn than growing pigs in the control group, but 3.5 times less Cu. It could be concluded that the bioavailability of microelements to pigs from algae was higher than from the inorganic salts. Baltic macroalgae enriched with microelement ions could be potentially used as a biological feed additive.

Graphical Abstract

Keywords : macroalgae; microelements; biosorption; feed additive; growing pigs

References

  • [1] Harnedy P.A., FitzGerald R.J., Bioactive proteins, peptides, and amino acids from macroalgae, J. Phycol., 2011, 47, 218–232. CrossrefWeb of ScienceGoogle Scholar

  • [2] Rohani-Ghadikolaei K., Abdulalian E., Ng W-K., Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources, J. Food Sci. Technol. 2012, 49, 774–780. Web of ScienceCrossrefGoogle Scholar

  • [3] Chojnacka K., Using the biomass of seaweeds in the production of components of feed and fertilizers. In: Kim SK, editor. Handbook on Macroalgae: Biotechnology and Applied Phycology. Chichester, UK: John Wiley & Sons, Ltd., 2011. p. 478-487. Google Scholar

  • [4] Dierick N., Ovyn A., De Smet S., Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs, J. Sci. Food Agricult. 2009, 89, 584–594. CrossrefGoogle Scholar

  • [5] Hansen H.R., Hector B.L., Feldmann J., A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep, Anim. Feed Sci. Technol., 2003, 105, 21–28. CrossrefGoogle Scholar

  • [6] Aguilera-Morales M., Casas-Valdez M., Carrillo-Domínguez S., González-Acosta B., Pérez-Gil F., Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source, J. Food Comp. Anal., 2005, 18, 79–88. CrossrefGoogle Scholar

  • [7] Akköz C., Arslan D., Ünver A., Özcan M.M., Yilmaz B., Chemical composition, total phenolic and mineral contents of Enteromorpha intestinalis (L.) Kütz. and Cladophora glomerata (L.) Kütz. seaweeds, J. Food Biochem. 2011, 35, 513–523. Web of ScienceCrossrefGoogle Scholar

  • [8] Ganesan K., Suresh Kumar K., Subba Rao P.V., Tsukui Y., Bhaskar N., Hosokawa M., Miyashita K., Studies on chemical composition of three species of Enteromorpha, Biomed. Prevent. Nutr. 2014, 4, 365–369. CrossrefGoogle Scholar

  • [9] Haroon AM, Szaniawska A, Normant M, Janas U (2000) The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Baltic Sea, Oceanologia 42:19–28. Google Scholar

  • [10] Mamatha B.S., Namitha K.K., Senthil A, Smitha J., Ravishankar G.A., Studies on use of Enteromorpha in snack food, Food Chem. 2007, 101, 1707–1713. CrossrefWeb of ScienceGoogle Scholar

  • [11] Fong P., Donohoe R.M., Zedler J.B., Nutrient concentration in the tissue of the macroalga Enteromorpha as a function of nutrient history: an experimental evaluation using field microcosms, Mar. Ecol. Prog. Ser., 1994, 106, 273–281. CrossrefGoogle Scholar

  • [12] Hou X., Yan X., Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae, Sci. Total Environ., 1998, 222, 141–156. CrossrefGoogle Scholar

  • [13] Żbikowski R., Szefer P., Latała A., Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic, Environ. Pollut., 2006, 143, 435–448. Google Scholar

  • [14] Michalak I., Witek-Krowiak A., Chojnacka K., Bhatnagar A., Advances in biosorption of microelements – the starting point for the production of new agrochemicals, Rev. Inorg. Chem., 2015, 35(3), 115–133. CrossrefWeb of ScienceGoogle Scholar

  • [15] Włodarczyk R., Geier U., Efficacy of dietary trace minerals supplementation depending on their source in swine nutrition, Życie Weterynaryjne, 2010, 85(7), 594–597. Google Scholar

  • [16] Smulikowska S, Standards in Swine Feeding. Omnitech Press, Warsaw (1993). Google Scholar

  • [17] Michalak I., Chojnacka K., Edible macroalga Ulva prolifera as microelemental feed supplement for livestock: the fundamental assumptions of the production method, World J. Microbiol. Biotechnol., 2009, 25, 997–1005. Web of ScienceCrossrefGoogle Scholar

  • [18] Michalak I., Chojnacka K., The new application of biosorption properties of Enteromorpha prolifera, Appl. Biochem. Biotechnol., 2010, 160, 1540–1556. Web of ScienceGoogle Scholar

  • [19] Michalak I., Chojnacka K., Dobrzański Z., Górecki H., Zielińska A., Korczyński M., Opaliński S., The effect of enriched with microelements macroalgae on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings, J. Animal Physiol. Animal Nutr., 2011, 95, 374–387. CrossrefGoogle Scholar

  • [20] Witkowska Z., Chojnacka K., Korczyński M., Świniarska M., Saeid A., Opaliński S., Dobrzański Z., Soybean meal enriched with microelements by biosorption – A new biological feed supplement for laying hens. Part I. Performance and egg traits, Food Chem. 2014a, 151, 86–92. Web of ScienceGoogle Scholar

  • [21] Witkowska Z., Michalak I., Korczyński M., Szołtysik M., Świniarska M., Dobrzański Z., Tuhy Ł., Samoraj M., Chojnacka K., Biofortification of milk and cheese with microelements by dietary feed bio-preparations, J. Food Sci. Technol., 2015, 52(10), 6484–6492. Web of ScienceCrossrefGoogle Scholar

  • [22] Witkowska Z., Saeid A., Korczyński M., Dobrzański Z., Chojnacka K., Biofortification of meat with microelements by biological dietary feed supplements. J. Nutr. Food Sci. 2014b, 4, 311, DOI: 10.4172/2155-9600.1000311. CrossrefGoogle Scholar

  • [23] Saeid A., Chojnacka K., Korczyński M., Korniewicz D., Dobrzański Z., Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. J. Appl. Phycol., 2013a, 25, 667–675. Web of ScienceCrossrefGoogle Scholar

  • [24] Saeid A., Chojnacka K., Korczyński M., Korniewicz D., Dobrzański Z., Effect on supplementation of Spirulina maxima enriched with Cu on production performance, metabolical and physiological parameters in fattening pigs, J. Appl. Phycol. 2013b, 25, 1607–1617. CrossrefWeb of ScienceGoogle Scholar

  • [25] Witek-Krowiak A., Podstawczyk D., Chojnacka K., Dawiec A., Marycz K., Modelling and optimization of chromium III biosorption on soybean meal, Cent. Eur. J. Chem., 2013, 11(9), 1505–1517. Web of ScienceGoogle Scholar

  • [26] Korniewicz D., Dobrzański Z., Kołacz R., Hoffmann J., Korniewicz A., Antkowiak K., Effect of various feed phosphates on productivity, slaughter performance and meat quality of fattening pigs, Med. Weter., 2012, 68, 353–358. Google Scholar

  • [27] He M.L., Hollwich W., Rambeck W.A., Supplementation of algae to the diet of pigs: a new possibility to improve the iodine content in the meat, J. Animal Physiol. Animal Nutr., 2002, 86, 97–104. CrossrefGoogle Scholar

  • [28] Jacela J.Y., DeRouchey J.M., Tokach M.D., Goodband R.D., Nelssen J.L., Renter D.G., Dritz S.S., Feed additives for swine: Fact sheets – high dietary levels of copper and zinc for young pigs, and phytase, J. Swine Health Prod., 2010, 18(2), 87–91. Google Scholar

  • [29] McDowell L.R., Feeding minerals to cattle on pasture, Anim. Feed Sci. Technol., 1996, 60 (3–4), 247–271. CrossrefGoogle Scholar

  • [30] Jondreville C., Revy P.S., Dourmand J.Y., Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter, Livest. Prod. Sci., 2003, 84, 147–156. CrossrefGoogle Scholar

  • [31] Truccolo M.M.. Swine supplementation with zinc and copper: A review about organic minerals as a solution for environmental contamination. In: Proceedings of 47th Croatian and 7th International Symposium on Agriculture, Opatija, Croatia, 2012. p. 741–744. Google Scholar

  • [32] Revy P.S., Jondreville C., Dourmad J.Y., Guinotte F., Nys Y., Bioavailability of two sources of zinc in weanling pigs, Animal Res., 2002, 51, 315–326. CrossrefGoogle Scholar

  • [33] Hernández A., Pluske J.R., D’Souza D.N., Mullan B.P., Levels of copper and zinc in diets for growing and finishing pigs can be reduced without detrimental effects on production and mineral status, Animal 2008, 2, 1763–1771. CrossrefGoogle Scholar

  • [34] Wedekind K.J., Lewis A.J., Giesemann M.A., Miller P.S., Bioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diet, J. Animal Sci., 1994, 72, 2681–2689. Google Scholar

  • [35] Svoboda M., Saláková A., Fajt Z., Kotrbáček V., Ficek R., Drábek J., Efficacy of Se-enriched alga Chlorella spp. and Se-enriched yeast on tissue. Selenium retention and carcass characteristics in finisher pigs, Acta Veter. Brno, 2009, 78, 579–587. CrossrefGoogle Scholar

  • [36] Apgar G.A., Kornegay E.T., Lindemann M.D., Notter D.R., Evaluation of copper sulfate and a copper lysine complex as growth promoters for weanling swine, J. Anim Sci., 1995, 73, 2640–2646. CrossrefGoogle Scholar

  • [37] Schiavon S., Bailoni L., Ramanzin M., Vincenzi R., Simonetto A., Bittante G., Effect of proteinate or sulphate mineral sources on trace elements in blood and liver of piglets, Animal Sci., 2000, 71, 131–139. CrossrefGoogle Scholar

  • [38] Lee S.H., Choi S.C., Chae B.J., Lee J.K., Acda S.P., Evaluation of metal-amino acid chelates and complexes at various levels of copper and zinc in weanling pigs and broiler chicks, Asian-Austr. J. Animal Sci., 2001, 14, 1734–1740. Google Scholar

About the article

Received: 2015-07-21

Accepted: 2015-10-22

Published Online: 2016-01-18

Published in Print: 2015-12-31


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0149.

Export Citation

© 2015 Izabela Michalak et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in