Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Alle Formate und Preise
Weitere Optionen …
Band 15, Heft 1


Volume 13 (2015)

A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus

Marco Masi
  • Korrespondenzautor
  • Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126, Italy
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Alessio Cimmino
  • Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126, Italy
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Nurhayat Tabanca
  • Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
  • USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
  • USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 USA
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ James J. Becnel
  • USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Jeffrey R. Bloomquist
  • Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Evidente
  • Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126, Italy
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 14.06.2017 | DOI: https://doi.org/10.1515/chem-2017-0019


Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites belonging to different chemical subgroups, including Amaryllidaceae alkaloids, anthracenes, azoxymethoxytetrahydropyrans, cytochalasans, 2,5-diketopiperazines, isochromanones, naphthoquinones, organic small acids and their methyl esters, sterols and terpenes including sesquiterpenes and diterpenes, were tested for their larvicidal and adulticidal activity against Ae. aegypti. Out of 23 compounds tested, gliotoxin exhibited mosquitocidal activity in both bioassays with an LC50 value of 0.0257 ± 0.001 µg/µL against 1st instar Ae. aegypti and LD50 value of 2.79 ± 0.1197 µg/mosquito against adult female Ae. aegypti. 2-Methoxy-1,4-naphthoquinone and cytochalasin A showed LC50 values of 0.0851 ± 0.0012 µg/µL and 0.0854 ± 0.0019 µg/µL, respectively, against Ae. aegypti larvae. In adult bioassays, fusaric acid (LD50= 0.8349 ± 0.0118 µg/mosquito), 3-nitropropionic acid (LD50 = 1.6641 ± 0.0494 µg/mosquito) and α-costic acid (LD50 = 2.547 ± 0.0835 µg/mosquito) exhibited adulticidal activity. Results from the current study confirm that compounds belonging to cytochalsin, diketopiperazine, naphthoquinone and low molecular weight organic acid groups are active and may stimulate further SAR investigations.

Keywords: secondary metabolites; mosquito control; biopesticides; microbial and plant derived natural products

1 Introduction

Dengue fever causes significant human illness and mortality worldwide, especially in the tropics and subtropical regions [1]. Dengue fever, also known as a break-bone fever, is an infectious disease caused by the tropical dengue virus [2, 3]. The disease is transmitted by mosquitoes of the genus Aedes, especially the species Aedes aegypti L. (Diptera: Culicidae) [4]. Typical symptoms of the disease are fever, headache, muscle and joint pain, in addition to a characteristic rash similar to measles [5]. The incidence of dengue has grown rapidly, by a factor of thirty since the 1960’s. Between 1960 and 2010, human population growth and migration increased and 50-100 million people were infected with dengue fever each year. Prevention of the disease is based on controlling the mosquito population vector and protection from contact with the residents of endemic areas [1]. One dengue vaccine (CYD-TDV, or Dengvaxia®) has been registered and several of other dengue vaccine candidates are in clinical development. The two most advanced candidates are currently under evaluation in Phase 3 trials [6].

Ae. aegypti is also one of the vectors of Zika virus [7]. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as the first infections were associated with flu-like symptoms [8]. In addition, severe neurological complications were reported in the French Polynesian outbreak in 2013 and 2014, and later a dramatic increase in congenital malformations (microcephaly) were reported from Zika emergence in Brazil [7]. Although there is no vaccine to control the Zika virus, several attempts are in the development phase. Preventative measures are therefore the same as cited above for Ae. aegypti-borne diseases [9].

The main method of control of Ae. aegypti is the elimination of its habitat [10, 11], which can be achieved in disease-endemic areas by emptying any standing containers of water. The most widely used larvicide worldwide for mosquitoes is Bacillus thuringiensis israelensis (Bti). Application of Bti has been used to reduce the number of mosquitoes, including Ae. aegypti [10, 11]. Another method is the use of animal species that prey on the vector, such as Poecilia reticulata or copepods that feed on their larvae or the immature stages of Toxorhynchites spp. that can consume mosquito larvae in tree crevices. Wolbachia-infected Ae. aegypti for dengue fever control can be another biocontrol approach [11]. Repellents applied to skin or clothing are also recommended as a means of personal protection against biting arthropods [12]. Insecticides, such as pyrethroids and organophosphates [13] can also be used. Synthetic and natural compounds, including pyrethroids, are approved by the EPA (Environmental Protection Agency) for use as repellents, but only when applied to clothing [14]. However, use of pyrethroids for control of a wide range of arthropods has given rise to environmental and health concerns [15-17]. These problems were increased by the development of resistance against pyrethroids and other insecticides, and this resistance has prompted the design of alternative control strategies [16-18]. Therefore, great effort has been expended on the development of pest controls using naturally occurring compounds such as secondary plant and fungal metabolites. Many naturally occurring repellents and insecticides have the potential for development into useful products with lowered risk to mammals and the environment [19-21]. As a consequence, the search for new anti-dengue agents from medicinal plants has become more urgent than in the past and the results of these studies were recently reviewed [12, 22, 23].

Microbial phytotoxins are a source of natural products and have been extensively investigated in agrochemical discovery by Evidente and coauthors [24-31]. For example, some fungal phytotoxins such as cyclopaldic acid, seiridin, sphaeropsidin A and papyracillic acid were evaluated for their biting deterrent and larvicidal activities against 1st instar Ae. aegypti [32]. Furthermore, papyracillic acid isolated from a solid culture of Ascochyta agropyrina var. nana showed potential herbicide activity against quack grass Elytrigia repens [24]. These promising results stimulated the preparation of semisynthetic derivatives of papyracillic acid and investigation of the structure-activity relationships of active deterrent compounds in a subsequent study [33].

In our continuing effort to find new natural mosquitocidal agents, several fungal and plant metabolites belonging to diverse structural classes, including; alkaloids, anthracenes, azoxymethoxytetrahydropyrans, cytochalasans, 2,5-diketopiperazines, isochromanones, naphthoquinones, small organic acids and their methyl esters, sterols, and terpenes were evaluated against Ae. aegypti.

2 Experimental

2.1 General

All the metabolites used to test for insecticidal activity against Ae. aegypti are shown in Figure 1 and reported in Table 1, which also contains the compound source and the corresponding literature [28, 29, 34-46]. Purity of each compound was ascertained by TLC, NMR and ESI-MS using established methods. 1H NMR spectra were recorded at 400 MHz, on Bruker spectrometer (Bruker BioSpin GmbH., Karlshrue, Germany), using the same solvent as used for the internal standard. ESI MS spectra were recorded on Agilent Technologies 6120 quadrupole LC/MS instrument (Agilent instruments, Milan, Italy); analytical and preparative thin layer chromatography (TLC) were performed on silica gel (Kieselgel 60, F254, 0.25 and 0.5 mm respectively) plates (Merck, Darmstadt, Germany); the spots were visualized by exposure to UV light or by spraying with 10% H2SO4 in CH3OH and then 5% phosphomolybdic acid in EtOH, followed by heating at 110°C for 10 min.

Structures of bacterial, fungal and plant metabolites assayed against Ae. aegypti
Figure 1

Structures of bacterial, fungal and plant metabolites assayed against Ae. aegypti

Table 1

Bacterial, fungal and plant metabolites assayed against Ae. aegypti

2.2 Mosquitoes

Aedes aegypti larvae and adults used in this study were from laboratory colonies maintained at the USDA-ARS, CMAVE, Gainesville, Florida, USA. The “Orlando” strain was collected near Orlando, Florida, USA in 1952 and has been in continuous laboratory colony for 65 years. Rearing procedures are standardized and have been described previously [47]. Technical-grade permethrin (Chem Service, West Chester, PA, USA), a combination of 46.1% cis and 53.2% trans isomers, was used as the positive control in all assays.

2.2.1 Larvicidal activity

For larval bioassays (Fig. 2), all compounds were initially diluted in DMSO to make 100 µg/µL. Mortality was determined in the larval assays at four different concentrations (1.0, 0.5, 0.25, and 0.1 µg/µL) in a final volume of 200 µL of larval rearing media that contained five 1st instar Ae. aegypti larvae. Larval assays were performed using a 96-well plate and the larvae were provided with 10 µL of the supernatant from a 2% solution of 1:1 alfalfa powder: pig chow. For each assay, a positive control of permethrin and a negative control of DMSO was included. Mortality data were recorded 24 hours post-exposure. Assays were repeated at least three times on different days.

Larval bioassay against 1st instar Ae. aegypti, a) preparing samples to assay; b) each well contains 5 larvae; c) After treatments, samples were kept in 96-well plates were kept at room temperature
Figure 2

Larval bioassay against 1st instar Ae. aegypti, a) preparing samples to assay; b) each well contains 5 larvae; c) After treatments, samples were kept in 96-well plates were kept at room temperature

2.3.2 Adulticidal activity

To determine the toxicity of each sample against adult female Ae. aegypti, samples were initially diluted to a 10% DMSO solution that was subsequently serially diluted 1:10 in acetone. Mosquitoes were anesthetized on ice and groups of 10 females sorted into individual plastic cups. Application of 0.5 µL of the sample solution was applied to dorsal thorax using a Hamilton 700 series syringe and a PB600 repeating dispenser (Thermo Fisher Scientific, Hampton, NH, USA) at a discriminating dose of 5 µg/mosquito. After treatment, mosquitoes were kept in plastic cups and supplied with 10% sucrose solution (Fig. 3). Mortality data were recorded 24 hours post-exposure. Assays were repeated at least three times on different days. For each assay, a positive control of permethrin and a negative control of acetone was included. Statistical analysis for both assays was performed in SigmaPlot.v13 using the best fit sigmoidal plot with the minimum and maximum constrained to 0% and 100%, respectively.

Adult bioassay against female Ae. aegypti, a) selecting female mosquitoes; b) compounds were topically applied to individual mosquitoes; c) After treatments, mosquitoes were kept in plastic cups with 10% sucrose solution for 24 h before mortality was recorded
Figure 3

Adult bioassay against female Ae. aegypti, a) selecting female mosquitoes; b) compounds were topically applied to individual mosquitoes; c) After treatments, mosquitoes were kept in plastic cups with 10% sucrose solution for 24 h before mortality was recorded

LC50 and LD50 values and 95% confidence intervals (95% CI) were determined for compounds that produced ~80% mortality at the discriminating dose in both larval and adult assays respectively. This was accomplished by using a descending dose series and replicated at least three times. Values were determined by plotting dose-mortality data to a 4-parameter logistic sigmoidal non-linear regression as implemented by SigmaPlot v13.

3 Results and Discussion

The metabolites isolated from bacteria, fungi, and plants belong to several different classes of natural compounds (Table 1) were investigated for the first time to evaluate them as new insecticidal agents against Ae. aegypti. In larval bioassays, mortality was determined at four final concentrations, 1.0, 0.5, 0.25 and 0.1 µg/µL. Out of the 23 compounds (Fig. 1), only three compounds, cytochalasin A (6), gliotoxin (9) and 2-methoxy-1,4-naphthoquinone (15), produced over 80% mortality (Table 2) and subsequently, dose-response bioassays were performed. Compound 9 showed the highest mortality with an LC50 of 0.0257 ± 0.001 µg/µL and followed by compounds 15 (LC50 = 0.0851 ± 0.0012 µg/µL) and 6 (LC50 = 0.0854 ± 0.0019 µg/µL) (Table 2).

Table 2

Larvicidal and adulticidal activity of bacterial, fungal and plants metabolites against Ae. aegpyti

In adult bioassays, compounds were tested at the pre-screening dose of 5 µg/mosquito and only four compounds, α-costic acid (4), fusaric acid (8), gliotoxin (9) and 3-nitropropionic acid (16), demonstrated mortality between 83-97% (Table 2). Based on this initial screening activity data, LD50 bioassays were conducted and compound 8 was the most effective compounds with an LD50 value of 0.8349 ± 0.0118 µg/mosquito and followed by compounds 16 (LD50 value = 1.6641 ± 0.0494 µg/mosquito), 4 (LD50 value = 2.547 ± 0.0835 µg/mosquito), 9 (LD50 value= 2.79 ± 0.1197 µg/mosquito) (Table 2).

Among the most active compounds, gliotoxin (9) possessed the best larvicidal activity, whereas fusaric acid (8) demonstrated the greatest adulticidal activity. Compounds chloromonilicin (3), a-costic acid (4), fusaric acid (8), inuloxin A (13) and 3-nitroprpionic acid (16) showed >90% mortality at the 1.0 µg/µL; however, the activity declined quickly as the compound was diluted. In adult bioassays, compounds (20), pyripyropene A (18), pyripyropene E (19), haemanthidine (11), sphaeropsidin C (21), haemanthamine (10) and cytochalasin A (6) exhibited moderate activity and weak activity was displayed by buphanamine (1), chloromonilicin (3), cytochalasin B (7), inuloxin C (14) and 6-hydroxymellein (12). There was no correlation between log P values and adult or larval toxicity (Table 2).

Although compounds showing lavicidal and adulticidal activity belong to different classes of natural compounds, such as diketpiperazines, cyochalasans, naphthoquinones and low molecular weight acids, it seems interesting to compare the high activity of cytochalasin A to the near inactivity of cytochalasin B. In this case, the data confirm the importance of the functional group at C-20, as well as the conformational freedom of the macrocycle for this group of natural compounds. Similar structural impacts were previously observed in tests of their phytotoxic, antimicrobial, cytotoxic, and zootoxic activities [27, 48-52]. Recently, Van Goietsenoven et al. [53] studied the structure activity relationships (SAR) of eight natural and three hemisynthetic derivatives of cytochalasins and they found that the presence of the hydroxy group at C-7, the functional group at C-20, and the conformational freedom of the macrocyclic ring appeared to also be important structural features for the inhibitory effect on cancer cells.

The compounds buphanamine (1), haemanthamine (10), and haemanthidine (11) belong to the crinine subgroup of the Amaryllidceae alkaloids [54], and they are defined by the ethane bridge that joins rings B and C, although they have an opposite stereochemistry. As compounds 10 and 11 showed similar adulticidal activity and a lesser larvicidal activity (Table 2), the presence of the hydroxy group on B-ring in 11 seems to not affect these activities. Thus, the lack of larvicidal activity of 1, with respect to that of 10 and 11, could be due to the different stereochemistry of the above cited ethane bridge, which probably affects negatively its interaction with the receptor and perhaps also the different functionalization of the C ring and the presence of the methoxy group at the aromatic A ring.

Inuloxins A (13) and C (14) are both sesquiterpenes, but belong to two different subgroups as germacranes and eudesmanolides, respectively. They are characterized by differences in the carbon skeleton generated from divergent biosynthesis of the common farnesyl-OPP precursor [55]. In our studies, their larvicidal and adulticidal activity was differentiated by inuloxin A (13) being 2-fold more toxic than inuloxin C (14) to Aedes larvae and adults (Table 2).

4 Conclusions

Current and future insect control mainly relies upon synthetic insecticides; in particular, control of vector-borne diseases would not be effective without these compounds. However, the development of resistance and adverse effect on the environment and human health have become apparent. Natural-based pesticides are often considered a low-risk substitute for conventional chemical insecticides. Though commercial adaptation of natural-based insecticides has been less than expected, continuing scientific studies and growing public awareness are inspiring the development of natural products as new lead insecticides. Pyrethrins are a good example of natural insecticides and their synthetic analogs, pyrethroids, are currently used in numerous formulations for the control of insect pests on animals and in the environment [56]. Microbially produced biopesticides such as abamectins, milbemectin, and spinosyns were developed as insecticides [57], with abamectins and spinosyns synthetically modified to possess higher efficacy for lepidopteran species [58]. Fungi-derived natural products have been an excellent source of pharmaceuticals as well, such as penicillins, cholesterol-lowering lovastatin, echinocandin B, and immunosuppressive cyclosporin A, proving the importance of investigating fungal sources for new medicines [59, 60]. Also the plants are a very good source of compounds with different biological activities and mode of actions. Recently, three new alkaloids, isolated from the South African plant Nerine sarniensis, showed insecticidal activity against Ae. Aegypti [61, 62].

Results from the current study have stimulated further structure-activity investigations with respect to the mosquitocidal activity of compounds belonging to diketopiperazine, cytochalasan, naphthoquinone and low molecular weight organic acid groups. Further studies are necessary to determine their potential activity against a wide range of insects and these five compounds [a-costic acid (4), cytochalasin A (6), gliotoxin (9), 2-methoxy-1,4-naphthoquinone (15) and 3-nitropropionic acid (16)] could be chemically optimized to improve their insecticidal activity. Finally, microbial metabolites are produced in relatively large quantities by fungi and may be a source of alternatives for insecticidal control of Ae. aegypti.


This study was partly funded by the Deployed War-Fighter Protection Research Program via grants from the U.S. Department of Defense through the Armed Forces Pest Management Board (to JJB and 58-0208-5-001 to JRB). We thank Miss Jessica Louton and Dr. Alden S. Estep (USDA-ARS, CMAVE, Gainesville, FL) for mosquito bioassays. Prof. A. Evidente is associated to Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy.


  • [1]

    WHO, Dengue guidelines for diagnosis, treatment, prevention and control. WHO Press, World Health Organization, Geneva, 2009, pp 1-144. Google Scholar

  • [2]

    Clarke T. Dengue virus: Break-bone fever, Nature, 2002, 416,672-674. PubMedCrossrefGoogle Scholar

  • [3]

    Reiter P. Yellow fever and dengue: A threat to Europe? Euro Surveill, 2010, 15, 19509. PubMedGoogle Scholar

  • [4]

    Swale D.R., Engers D.W., Bollinger S.R., Gross A., Inocente E.A., Days E., Kanga F., Johnson R.M., Yang L., Bloomquist J.R., Hopkins C.R., Piermarini P.M., Denton J.S. An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria, Sci. Rep., 2016, 6, 36954. PubMedCrossrefGoogle Scholar

  • [5]

    Whitehorn J., Farrar J. Dengue, Br. Med. Bull., 2010, 95, 161-173. PubMedCrossrefGoogle Scholar

  • [6]

    WHO, Dengue vaccine: WHO position paper, 2016, 91, 349-364 (http://www.who.int/wer/2016/wer9130.pdf?ua=1, accessed on March 3, 2017). 

  • [7]

    Musso D., Gubler D.J. Zika virus: following the path of dengue and chikungunya? Lancet, 2015, 386, 243-244. CrossrefPubMedGoogle Scholar

  • [8]

    Nicolini A.M., McCracken K.E., Yoon J.Y. Future developments in biosensors for field-ready Zika virus diagnostics, J. Biol. Eng., 2017, 11, 7, doi: 10.1186/s13036-016-0046-z. PubMedCrossrefGoogle Scholar

  • [9]

    Musso D., Gubler D.J. Zika virus, Clinical Microbiol. Rev., 2016, 29, 487-524. Google Scholar

  • [10]

    Lacey L.A. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control, J. Am. Mosq. Control Assoc., 2007, 23 (2 Suppl), 133-163. CrossrefPubMedGoogle Scholar

  • [11]

    Benelli G., Jeffries C.L., Waler T. Biological control of mosquito vectors: Past, present, and future, Insects, 2016, 7, 52. CrossrefGoogle Scholar

  • [12]

    Tabanca N., Bernier U.R., Agramonte N.M., Tsikolia M., Bloomquist J.R. Discovery of repellents from natural products, Curr. Org. Chem., 2016, 20, 2690-2702. CrossrefGoogle Scholar

  • [13]

    Hoel D., Pridgeon J.W., Bernier U.R., Chauhan K., Meepagala K., Cantrell C.L. Departments of defense and agriculture team up to develop new insecticides for mosquito control, Wingbeats, 2010, 21, 19-34. Google Scholar

  • [14]

    Schreck C.E., Mount G.A., Carlson D.A. Wear and wash persistence of permethrin used as a clothing treatment for personal protection against the lone star tick (Acari: Ixodidae), J. Med. Entomol., 1982, 19, 143-146. PubMedCrossrefGoogle Scholar

  • [15]

    Farias D.F., Cavalheiro M.G., Viana S.M., De Lima G.P., Da Rocha-Bezerra L.C., Ricardo N.M., Carvalho A.F. Insecticidal action of sodium anacardate from Brazilian cashew nut shell liquid against Aedes aegypti, J. Am. Mosquito Contr., 2009, 25, 386-389. CrossrefGoogle Scholar

  • [16]

    Duke S.O., Cantrell C.L., Meepagala K.M., Wedge D.E., Tabanca N., Schrader K.K. Natural toxins for use in pest management, Toxins, 2010, 2, 1943-1962. PubMedCrossrefGoogle Scholar

  • [17]

    Duke S.O., Baerson S.R., Cantrell C.L., Wedge D.E., Meepagala K.M., Pan Z., Rimando AM., Schrader K.K., Tabanca N., Owens D.K., Dayan, F.E. Phytochemicals for pest management: Current advances and future opportunities, Rec. Adv. Phytochem., 2014, 43, 71-94. Google Scholar

  • [18]

    Gross A.D., Tabanca N., Islam R., Ali A., Khan I.A., Kaplancikli Z.A., Altintop M.D., Ozdemir A., Bloomquist J.R. Toxicity and synergistic activities of chalcones against Aedes aegypti (Diptera: Culicidae) and Drosophila melanogaster (Diptera: Drosophilidae), J. Med. Entomol., 2016 (in press), doi: 10.1093/jme/tjw183 Google Scholar

  • [19]

    Dayan F.E., Cantrell C.L., Duke S.O. Natural products in crop protection, Bioorgan. Med. Chem., 2009, 14, 4022-4034. Google Scholar

  • [20]

    Evidente A. New fungal metabolites, as antifungal, herbicides and insecticides for biocontrol of agrarian pests, In: Gupta V.J. (Ed.), Comprehensive bioactive natural products, Studium Press LLC: Houston, 2010, p 333.Google Scholar

  • [21]

    Cantrell C.L., Dayan F.E., Duke S.O. Natural products as sources for new pesticides, J. Nat. Prod., 2012, 75, 1231-1242. CrossrefPubMedGoogle Scholar

  • [22]

    Abd Kadir S.L., Yaakob H., Mohamed Zulkifli R. Potential anti-dengue medicinal plants: A review, J. Nat. Med., 2013, 67, 677-689. CrossrefPubMedGoogle Scholar

  • [23]

    Kishore N., Mishra B.B., Tiwari V.K., Tripathi V., Lall N. Natural products as leads to potential mosquitocides, Phytochem. Rev., 2014, 13, 587-627. CrossrefGoogle Scholar

  • [24]

    Evidente A., Berestetskiy A., Cimmino A., Tuzi A., Superchi S., Melck D., Andolfi A. Papyracillic acid, a phytotoxic 1,6- dioxaspiro [4,4] nonene produced by Ascochyta agropyrina var. nana, a potential mycoherbicide for Elytrigia repens biocontrol, J. Agric. Food Chem., 2009, 57, 11168-11173. CrossrefPubMedGoogle Scholar

  • [25]

    Cimmino A., Masi M., Evidente M., Superchi S., Evidente A. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization, Nat. Prod. Rep. 2015, 32, 1629-1653.PubMedCrossrefGoogle Scholar

  • [26]

    Balde E. S., Andolfi A., Bruyère C., Cimmino A., Lamoral-Theys D., Vurro, M., Van Damme, M., Altomare C., Mathieu V., Kiss R., Evidente, A. Investigations of fungal secondary metabolites with potential anticancer activity, J. Nat. Prod., 2010, 73, 969-971.PubMedCrossrefGoogle Scholar

  • [27]

    Evidente A., Cimmino A., Andolfi A., Berestetskiy A., Motta A. Phomachalasins A–D, 26-oxa [16] and [15] cytochalasans produced by Phoma exigua var. exigua, a potential mycoherbicide for Cirsium arvense biocontrol, Tetrahedron, 2011, 67, 1557-1563. Google Scholar

  • [28]

    Schrader KK., Andolfi A., Cantrell C.L., Cimmino A, Duke S.O., Osbrink W., Wedge D.E., Evidente A. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem. Biodiv., 2010, 7, 2261-2280. CrossrefGoogle Scholar

  • [29]

    Cimmino A., Andolfi A., Zonno M.C., Avolio F., Santini A., Tuzi A., Berestetskyi A., Vurro M., Evidente A. Chenopodolin: a phytotoxic unrearranged ent-pimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol, J. Nat. Prod., 2013, 76, 1291-1297. CrossrefPubMedGoogle Scholar

  • [30]

    Cimmino A., Andolfi A., Zonno MC., Avolio F., Berestetskiy A., Vurro M., Evidente A. Chenopodolans A–C: Phytotoxic furopyrans produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album, Phytochemistry, 2013, 96, 208-213.CrossrefPubMedGoogle Scholar

  • [31]

    Masi M., Cimmino A., Boari A., Tuzi A., Zonno M.C., Baroncelli R., Vurro M., Evidente A. Colletochlorins E and F, new phytotoxic tetrasubstituted pyran-2-one and dihydrobenzofuran, isolated from Colletotrichum higginsianum with potential herbicidal activity, J. Agric. Food Chem., 2017, 65, 1124-1130. CrossrefGoogle Scholar

  • [32]

    Cimmino A., Andolfi A., Avolio F., Ali A., Tabanca N., Khan I.A., Evidente A. Cyclopaldic acid, seiridin, and sphaeropsidin A as fungal phytotoxins, and larvicidal and biting deterrents against Aedes aegypti (Diptera: Culicidae): Structure-activity relationships. Chem. Biodivers, 2013, 10, 1239-1251. PubMedCrossrefGoogle Scholar

  • [33]

    Cimmino A., Evidente M., Masi M., Ali A., Tabanca N., Khan, I.A., Evidente A. Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti (Diptera: Culicidae): structure–activity relationships, Med. Chem. Res., 2015, 24, 3981-3989. CrossrefGoogle Scholar

  • [34]

    Evidente A., lacobellis N.S., Scopa A., Surico G. Isolation of β-phenyllactic acid related compounds from Pseudomonas syringae, Phytochemistry, 1990, 29, 1491-1497. CrossrefGoogle Scholar

  • [35]

    Masi M., Meyer S., Cimmino A., Clement S., Black B., Evidente, A. Pyrenophoric acids B and C, two new phytotoxic sesquiterpenoids produced by Pyrenophora semeniperda. J. Agric. Food Chem. 2014,, 62, 10304-10311.CrossrefPubMedGoogle Scholar

  • [36]

    Masi M., Meyer S., Cimmino A., Andolfi A., Evidente A. Pyrenophoric acid, a phytotoxic sesquiterpenoid penta-2, 4-dienoic acid produced by a potential mycoherbicide, Pyrenophora semeniperda. J. Nat. Prod., 2014, 77, 925-930.PubMedCrossrefGoogle Scholar

  • [37]

    Masi M., Evidente A., Meyer S., Nicholson J., Muñoz A. Effect of strain and cultural conditions on the production of cytochalasin B by the potential mycoherbicide Pyrenophora semeniperda (Pleosporaceae, Pleosporales). Biocontrol Sci.Technol., 2014, 24, 53-64.CrossrefGoogle Scholar

  • [38]

    Masi M., Andolfi A., Mathieu V., Boari A., Cimmino A., Banuls L.M.Y., Vurro M., Kornienko A., Kiss R., Evidente A. Fischerindoline, a pyrroloindole sesquiterpenoid isolated from Neosartorya pseudofischeri, with in vitro growth inhibitory activity in human cancer cell lines, Tetrahedron, 2013, 69, 7466-7470.CrossrefGoogle Scholar

  • [39]

    Cimmino A., Pescitelli G., Berestetskiy A., Dalinova A., Krivorotov D., Tuzi A., Evidente A. Biological evaluation and determination of the absolute configuration of chloromonilicin, a strong antimicrobial metabolite isolated from Alternaria sonchi, J. Antibiot., 2016, 69, 9-14.CrossrefPubMedGoogle Scholar

  • [40]

    Cimmino A., Mathieu V., Evidente M., Ferderin M., Banuls, L. M.Y., Masi, M., De Carvalho A., Kiss R., Evidente A. Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells. Fitoterapia, 2016, 109, 138-145. CrossrefGoogle Scholar

  • [41]

    Van Goietsenoven G., Andolfi A., Lallemand B., Cimmino A., Lamoral-Theys D., Gras T., Abou-Donia A., Dubois J., Lefranc F., Mathieu V., Kornienko A., Kiss R., Evidente A. Amaryllidaceae alkaloids belonging to different structural subgroups display activity against apoptosis-resistant cancer cells, J. Nat. Prod., 2010, 73, 1223-1227.CrossrefPubMedGoogle Scholar

  • [42]

    Andolfi A., Zermane N., Cimmino A., Avolio F., Boari A., Vurro M., Evidente A. Inuloxins A–D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: potential for broomrapes and field dodder management, Phytochemistry, 2013, 86, 112-120.CrossrefGoogle Scholar

  • [43]

    Bani M., Rispail N, Evidente A, Rubiales D., Cimmino A. Identification of the main toxins isolated from Fusarium oxysporum f. sp. pisi race 2 and their relation with isolates’ pathogenicity, J. Agric. Food Chem., 2014, 62, 2574-2580.PubMedCrossrefGoogle Scholar

  • [44]

    Andolfi A., Boari A., Evidente M., Cimmino A., Vurro M., Ash G., Evidente A. Gulypyrones A and B and phomentrioloxins B and C produced by Diaporthe gulyae, a potential mycoherbicide for saffron thistle (Carthamus lanatus). J. Nat. Prod., 2015, 78, 623-629.CrossrefGoogle Scholar

  • [45]

    Andolfi A., Maddau L., Basso S., Linaldeddu B., Cimmino A., Scanu B., Deidda A., Tuzi A., Evidente A. Diplopimarane, a 20-nor-ent-pimarane produced by the oak pathogen Diplodia quercivora, J. Nat. Prod., 2014, 77, 2352-2360.CrossrefPubMedGoogle Scholar

  • [46]

    Lallemand B., Masi M., Maddau L., De Lorenzi M., Dam R., Cimmino A., Moreno Y Banuls L., Andolfi A. Kiss, R., Mathieu, V., Evidente, A. Evaluation of in vitro anticancer activity of sphaeropsidins A–C, fungal rearranged pimarane diterpenes, and semisynthetic derivatives. Phytochem. Lett., 2012, 5, 770-775. CrossrefGoogle Scholar

  • [47]

    Pridgeon J.W., Pereira R.M., Becnel J.J., Allan S.A., Clark G.G., Linthicum K.J. Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action, J. Med. Entomol., 2008, 45, 82-87. Google Scholar

  • [48]

    Bottalico A., Capasso R., Evidente A., Randazzo G., Vurro M. Cytochalasins: structure-activity relationships, Phytochemistry, 1990, 29, 93-96. CrossrefGoogle Scholar

  • [49]

    Capasso R., Evidente A., Vurro M. Cytochalasins from Phoma exigua var. heteromorpha, Phytochemistry, 1991, 30, 3945-3950.CrossrefGoogle Scholar

  • [50]

    Vurro M., Bottalico A., Capasso R., Evidente A. Cytochalasins from phytopathogenic Ascochyta and Phoma species, In: Upadhyay R.K., Mukerji K.G. (Eds.), Toxins in Plant Disease Development and Evolving Biotechnology. Oxford & IBH Publishing Co. PVT. LTD, New Delhi, 1997, pp. 127–147.Google Scholar

  • [51]

    Berestetskiy A., Dmitriev A., Mitina G., Lisker I., Andolfi A., Evidente A. Nonenolides and cytochalasins with phytotoxic activity against Cirsium arvense Sonchus arvensis: A structure–activity relationships study, Phytochemistry, 2008, 69, 953-960.PubMedCrossrefGoogle Scholar

  • [52]

    Cimmino A., Andolfi A., Berestetskiy A., Evidente A. Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles, J. Agric. Food Chem., 2008, 56, 6304-6309. PubMedCrossrefGoogle Scholar

  • [53]

    Van Goietsenoven, G., Mathieu V., Andolfi A., Cimmino A., Lefranc F., Kiss R., Evidente A. In vitro growth inhibitory effects of cytochalasins and derivatives in cancer cells. Planta Med., 2011, 77, 711-717. PubMedCrossrefGoogle Scholar

  • [54]

    Kornienko A., Evidente A. Chemistry, biology, and medicinal potential of narciclasine and its congeners, Chem. Rev., 2008, 108, 1982-2014. CrossrefPubMedGoogle Scholar

  • [55]

    Dewick M.P. Medicinal Natural Products – A Biosynthetic approach. John Wiley & Son, Ltd, 2009. Google Scholar

  • [56]

    Anadon A., Martínez-Larranãga M.R., Martínez M.A. Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine, Vet. J., 2009, 182, 7-20. PubMedCrossrefGoogle Scholar

  • [57]

    Seiber J.N., Coats J., Duke S.O., Gross A.D. Biopesticides: state of the art and future opportunities, J. Agric. Food Chem., 2014, 62, 11613-11619. PubMedCrossrefGoogle Scholar

  • [58]

    Gerwick B.C., Sparks T.C. Natural products for pest control: an analysis of their role, value and future, Pest Manag. Sci., 2014, 70, 1169-1185. CrossrefPubMedGoogle Scholar

  • [59]

    Evidente A., Kornienko A., Cimmino A., Andolfi A., Lefranc F., Mathieu V., Kiss R. Fungal metabolites with anticancer activity, Nat. Prod. Rep., 2014, 31, 617-627. PubMedCrossrefGoogle Scholar

  • [60]

    Kornienko A., Evidente A., Vurro M., Mathieu V., Cimmino A., Evidente M., van Otterlo W., Dasari, R., Lefranc F., Kiss, R. Toward a cancer drug of fungal origin. Med. Res. Rev., 2015, 35, 937-967. CrossrefGoogle Scholar

  • [61]

    Masi M., van der Westhuyzen A.E., Tabanca N., Evidente M., Cimmino A., Green I.R., Bernier U.R., Becnel J.J., Bloomquist J.R., van Otterlo W.A.L., Evidente A. Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. Fitoterapia, 2017, 116, 34-38. CrossrefPubMedGoogle Scholar

  • [62]

    Masi M., Cala A., Tabanca N., Cimmino A., Green I.R., Bloomquist J.R., van Otterlo W.A.L., Macias F.A., Evidente A. Alkaloids with activity against the Zika Virus vector Aedes aegypti (L.)–crinsarnine and sarniensinol, two new crinine and mesembrine type alkaloids isolated from the South African plant Nerine sarniensis. Molecules, 2016, 21, 1432. CrossrefGoogle Scholar



    Erhalten: 09.03.2017

    Angenommen: 08.05.2017

    Online erschienen: 14.06.2017

    Disclaimer: No potential conflict of interest was reported by the authors.

    Quellenangabe: Open Chemistry, Band 15, Heft 1, Seiten 156–166, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2017-0019.

    Zitat exportieren

    © 2017 Marco Masi et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

    Zitierende Artikel

    Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

    Alessio Cimmino, Fabrizio Freda, Ernesto Santoro, Stefano Superchi, Antonio Evidente, Massimo Cristofaro, and Marco Masi
    Natural Product Research, 2019, Seite 1
    Aline Camargo Jesus de Souza Wuillda, Roberto Carlos Campos Martins, and Fernanda das Neves Costa
    Natural Product Communications, 2019, Jahrgang 14, Nummer 7, Seite 1934578X1986289
    Thaïs Aznar-Fernández, Alessio Cimmino, Marco Masi, Diego Rubiales, and Antonio Evidente
    Natural Product Research, 2018, Seite 1
    Ali El-Gamal, Shaza Al-Massarani, Ghada Fawzy, Hanan Ati, Adnan Al-Rehaily, Omer Basudan, Maged Abdel-Kader, Nurhayat Tabanca, and James Becnel
    Natural Product Research, 2017, Seite 1

    Kommentare (0)