[1]

Rücker G., Rücker C., On topological indices, boiling points, and cycloalkanes. Journal of chemical information and computer sciences. 1999, 39(5),788-802. CrossrefGoogle Scholar

[2]

Gutman I,, Trinajstić N., Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chemical Physics Letters. 197, 17(4), 535-8. Google Scholar

[3]

Amić D., Bešlo D., Lučlć B., Nikolić S., Trinajstić N., The vertex-connectivity index revisited. Journal of chemical information and computer sciences. 1998, 38(5), 819-822. CrossrefGoogle Scholar

[4]

Kier L.B., Hall L.H., Molecular connectivity in structure-activity analysis. Research Studies, 1986. Google Scholar

[5]

Gutman I., Molecular graphs with minimal and maximal Randić indices. Croatica chemica acta, 2002, 75(2), 357-369. Google Scholar

[6]

Gutman I., Degree-based topological indices. Croatica Chemica Acta, 2013, 86(4), 351-361. CrossrefWeb of ScienceGoogle Scholar

[7]

Vukičević, D., On the edge degrees of trees. Glas. Mat. Ser. III, 2009, 44(64), 259–266. CrossrefGoogle Scholar

[8]

Dobrynin A.A., Entringer R., Gutman I., Wiener index of trees: theory and applications. Acta Applicandae Mathematicae, 2001, 66(3), 211-249. CrossrefGoogle Scholar

[9]

Munir M., Nazeer W., Rafique S., Kang S.M., M-polynomial and degree-based topological indices of polyhex nanotubes. Symmetry, 2016, 8(12), 149. Web of ScienceCrossrefGoogle Scholar

[10]

Munir M., Nazeer W., Rafique S., Kang S.M., M-polynomial and degree-based topological indices of polyhex nanotubes. Symmetry, 2016, 8(12),149. Web of ScienceCrossrefGoogle Scholar

[11]

Ajmal M., Kang S.M., Nazeer W., Munir M., Jung C.Y., Some Topological Invariants of the Möbius Ladders. Global Journal of Pure and Applied Mathematics, 2016, 12(6), 5317-5327.Google Scholar

[12]

Munir M., Nazeer W., Rafique S., Nizami A., Kang S. M., Some Computational Aspects of Triangular Boron Nanotubes, Symmetry, 2017, 9, 6, . CrossrefWeb of ScienceGoogle Scholar

[13]

West D.B., Introduction to Graph Theory Prentice Hall Upper Saddle River. NJ Google Scholar, 1996. Google Scholar

[14]

Deutsch E., Klavzar S., M-Polynomial and Degree-Based Topological Indices. Iranian Journal of Mathematical Chemistry, 2015, 6(2), 93-102. Google Scholar

[15]

Wu R., Deng H., The general connectivity indices of benzenoid systems and phenylenes. MATCH Commun. Math. Comput. Chem., 2010, 64, 459-470. Google Scholar

[16]

Javaid M., Jung C. Y., M-Polynomials and Topological Indices of Silicate and Oxide Networks, International Journal of Pure and Applied Mathematics, 2017, 115(1), 129-152, CrossrefGoogle Scholar

[17]

Kwun Y.C., Munir M., Nazeer W., Rafique S., Kang S.M., M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori. Scientific reports, 201, 7(1), 8756. Web of ScienceGoogle Scholar

[18]

Klavžar S., Gutman I., A comparison of the Schultz molecular topological index with the Wiener index. Journal of chemical information and computer sciences. 1996 Sep 24;36(5):1001- 1003. CrossrefGoogle Scholar

[19]

Deng H., Huang G., Jiang X., A unified linear-programming modeling of some topological indices. Journal of Combinatorial Optimization, 2015, 30(3), 826-837. CrossrefWeb of ScienceGoogle Scholar

[20]

Deng H., Yang J., Xia F., A general modeling of some vertex- degree based topological indices in benzenoid systems and phenylenes. Computers & Mathematics with Applications, 2011, 61(10), 3017-23. Web of ScienceCrossrefGoogle Scholar

[21]

Gutman I., Das K.C., The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004, 50, 83-92. Google Scholar

[22]

Bollobás B., Erdös P., Graphs of extremal weights. Ars Combinatoria, 1998, 50, 225-233. Google Scholar

[23]

Kier L.B., Hall L.H., Molecular connectivity in structure-activity analysis. Research Studies, 1986. Google Scholar

[24]

Huang Y., Liu B., Gan L., Augmented Zagreb index of connected graphs. Match-Communications in Mathematical and Computer Chemistry, 2012, 67(2), 483-494. Google Scholar

[25]

Furtula B., Graovac A., Vukičević D., Augmented Zagreb index, J. Math. Chem., 2010, 48, 370–380. Web of ScienceCrossrefGoogle Scholar

[26]

Farahani M.R., Rajesh Kanna M.R., Jamil M.K., Imran M., Computing the M-Polynomial of Benzenoid Molecular Graphs. Science International (Lahore), 2016, 28, 3251-3255. Google Scholar

[27]

Sardar M. S., Zafar S., Farahani M.R., THE GENERALIZED ZAGREB INDEX OF CAPRA-DESIGNED PLANAR BENZENOID SERIES $Ca_k(C_6)$, Open J. Math. Sci., 2017, 1 44–51. CrossrefGoogle Scholar

[28]

Mutee ur Rehman H., Sardar R., Raza A., Computing Topological Indices of Hex Board and its Line Graph, Open J. Math. Sci., 2017, 1, 62 - 71. CrossrefGoogle Scholar

[29]

Sardar, M. S., Pan X.X., Gao W., Farahani M. R., Computing Sanskruti Index of Titania Nanotubes, Open J. Math. Sci., 2017, 126 - 131 Google Scholar

[30]

Farahani M.R., Gao W., Baig A.Q., Khalid W., Molecular description of copper (II) oxide. Macedonian Journal of Chemistry and Chemical Engineering, 2017, 36(1), 93-99. Web of ScienceGoogle Scholar

[31]

Gao W., Wang Y., Wang W., Shi L., The first multiplication atombond connectivity index of molecular structures in drugs. Saudi Pharmaceutical Journal, 2017, 25(4), 548-555. CrossrefGoogle Scholar

[32]

Gao W., Farahani M.R., Wang S., Husin M.N., On the edge- version atom-bond connectivity and geometric arithmetic indices of certain graph operations. Applied Mathematics and Computation, 2017, 308, 11-17. Web of ScienceCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.