Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 16, Issue 1

Issues

Volume 13 (2015)

M-Polynomials and Topological Indices of Dominating David Derived Networks

Shin Min Kang
  • Corresponding author
  • Department of Mathematics and RINS, Gyeongsang National University, Jinju, 52828, Korea
  • Center for General Education, China Medical University, Taichung, 40402, Taiwan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Waqas Nazeer / Wei Gao
  • School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Deeba Afzal / Syeda Nausheen Gillani
Published Online: 2018-03-20 | DOI: https://doi.org/10.1515/chem-2018-0023

Abstract

There is a strong relationship between the chemical characteristics of chemical compounds and their molecular structures. Topological indices are numerical values associated with the chemical molecular graphs that help to understand the physical features, chemical reactivity, and biological activity of chemical compound. Thus, the study of the topological indices is important. M-polynomial helps to recover many degree-based topological indices for example Zagreb indices, Randic index, symmetric division idex, inverse sum index etc. In this article we compute M-polynomials of dominating David derived networks of the first type, second type and third type of dimension n and find some topological properties by using these M-polynomials. The results are plotted using Maple to see the dependence of topological indices on the involved parameters.

Keywords: degree-based topological index; Zagreb index; general Randić index; symmetric division index; M-polynomial; Networks

1 Introduction

The David derived and dominating David derived network of dimension n can be constructed as follows [1]: consider a n dimensional star of David network SD(n) [4]. Insert a new vertex on each edge and split it into two parts, this gives the David derived network DD(n of dimension n. The dominating David derived network of the first type of dimension n which can be obtained by connecting vertices of degree 2 of DDD(n) by an edge that are not in the boundary and is denoted by D1 (n) [1].

The dominating David derived network of the second type of dimension n can be obtained by subdividing the new edges in D1 (n) [1] and is denoted by D1 (2).

where Dx=x(f(x,y)x,Dy=y(f(x,y)y,Sx=0χf(t,y)tdt,Sy==0yf(x,t)tdt,J(f(x,y))=f(x,x),Qα(f(x,y))=xaf(x,y).

The dominating David derived network of the second type of dimension n denoted by D3 (n) can be obtained from D1 (n) by introducing a parallel path of length 2 between the vertices of degree two that are not in the boundary [1, 5].

In this report, M-polynomials of dominating David derived networks of the first type, second type and third type of dimension n, are computed. From these M-polynomials many degree-based topological indices are recovered. For example: first Zagreb index, second Zagreb index, modified second Zagreb index, Symmetric division index, generalized Randić index, generalized inverse Randić index, Augmented Zagreb index, etc for underlined networks. The results are plotted using maple 2015 software.

For basic definitions see [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

The following table 1 relates some well-known degreebased topological indices to M-polynomial [2].

Table 1

Derivation of some degree-based topological indices from M-polynomial.

More results on the computation of these indices can refer to [20, 21, 22, 23, 24, 25, 26, 27].

Ethical approval: The conducted research is not related to either human or animals use.

2 Main Results

2.1 M-Polynomial and topological indices of dominating David derived network of first type

Let G = D1 (n) be the dominating David derived network of first type. From Figure 1, this gives vertex and edge partitions (see Table 2,3)

Dominating David derived network of the first type D1 (2).
Figure 1

Dominating David derived network of the first type D1 (2).

Table 2

The vertex partition of set of D1 (n).

Table 3

The Edge partition of.

Theorem 1

Let D1(n) be the dominating David derived network of first type. Then the M-Polynomial of D1(n) is M (D1 (n);x,y) = 4nx2y2+ (4n − 4)x2y3 +(28n − 16)x2y4 + + (9n2 − 3n + 5)x3y3 + (36n2 − 56n + 24)x3x4 + (36n2 − 52n + 20)x4 y4

Proof

Let D1(n) is the dominating David derived network of first type. It is easy to see form Figure 1 that

From Table 2, the vertex set of D1(n) have three partitions: V1(D1(n))={uV(D1(n)):du=2},V2(D1(n))={uV(D1(n)):du=3},V3(D1(n))={uV(D1(n)):du=4},

such that |V1(D1(n))| = 20n − 10, |V2(D1(n))| = 18n2 − 26n +10, and |V3(D1(n))| = 27n2 − 33n +12 .

From Table 3, the edge set of D1(n) have six partitions: E1(D1(n))={e=uvE(D1(n)):du=2,dv=2},E2(D1(n))={e=uvE(D1(n)):du=2,dv=3},E3(D1(n))={e=uvE(D1(n)):du=2,dv=4},E4(D1(n))={e=uvE(D1(n)):du=3,dv=3},E5(D1(n))={e=uvE(D1(n)):du=3,dv=4},E6(D1(n))={e=uvE(D1(n)):du=4,dv=4}.

By means of Figure 1, this gives |E1(D1(n))|=4n,|E2(D1(n))|=4n4,|E3(D1(n))|=28n16,|E4(D1(n))|=9n213n+5,|E5(D1(n))|=36n256n+24,|E6(D1(n))|=36n252n+20.

Now according to the definition of the M-polynomial, this gives M(D1(n);x,y)=mijxjyj=uvE1(D1(n))m22x2y2ij+uvE2(D1(n))m23x2y3+uvE3(D1(n))m24x2y4+uvE4(D1(n))m33x3y3+uvE5(D1(n))m34x3y4+uvE6(D1(n))m44x4y4=|E1(D1(n))|x2y2+|E2(D1(n))|x2y3+|E3(D1(n))|x2y4+|E4(D1(n))|x3y3+|E5(D1(n))|x3y4+|E6(D1(n))|x4y4=4nx2y3+(4n4)x2y3+(28n16)x2y4+(9n213n+5)x3y3+(36n256n+24)x3y4+(36n252n+20)x4y4.

Figure 4 (shown above) is plotted by using Maple 15. This suggests that values obtained by M-polynomial show different behaviors corresponding to different parameters x and y. The values of M-polynomial can be controlled through these parameters. Clearly Figure 4 shows that along one side intercept is an upward opening parabola.

Dominating David derived network of the second type D2 (4).
Figure 2

Dominating David derived network of the second type D2 (4).

Dominating David derived network of the third type D3 (2).
Figure 3

Dominating David derived network of the third type D3 (2).

Plot of M-Polynomial of Dominating David Derived Network of first Type.
Figure 4

Plot of M-Polynomial of Dominating David Derived Network of first Type.

Next some degree-based topologcal indices of dominating David derived network of first type are computed from this M-polynomial.

Proposition 2

Let D1(n) be the dominating David derived network of first type

  1. M1(D1(n)) = 594n2 − 682n + 242

  2. M2(D1(n)) = 1089n2 − 1357n + 501.

  3. mM2(D1(n))=254n215136n+4136.

  4. Rα (D1(n)) = 22 α 4n + 6α (4n − 4) + 8α (28n − 16) + 32α (9n2 − 13n + 5) + + 12α (36n2 − 56n + 24) +42α (36n2 − 52n + 20).

  5. RRα(D1(n))=122α2n+16α(4n4)+123α(28n16)+132α(9n213n+5112α(36n256n+20)+124α(36n252n+20).

  6. SSD(D1(n)) = 165n2 − 160n + 1543.

  7. H(D1(n))=1567n21025n+692105.

  8. I(D1(n))=206114n2+520130n+13127210.

  9. A(D1(n))=3078831124000n21858527979216000n+130461491216000.

Proof

Let f(x,y)=4nx2y2+(4n4)x2y3+(28n16)x2y4+(9n23n+5)x3y3+(36n256n+24)x3y4+(36n252n+20)x4y4.

Then Dx(f(x,y))=8nx2y2+2(4n4)x2y3+2(28n16)x2y4+3(9n213n+5)x3y3+3(36n252n+24)x3y4+4(36n252n+20)x4y4.Dy(f(x,y))=8nx2y2+3(4n4)x2y3+4(28n16)x2y4+3(9n213n+5)x3y3+4(36n252n+24)x3y4+4(36n252n+20)x4y4.(DxDy)(f(x,y))=16nx2y2+6(4n4)x2y3+8(28n16)x2y4+9(9n213n+5)x3y3+12(36n252n+24)x3y4+16(36n252n+20)x4y4,SxSy(f(x,y))=nx2y2+16(4n4)x2y3+18(28n16)x2y4+19(9n213n+5)x3y3+112(36n252n+24)x3y4+116(36n252n+20)x4y4DxaDya(f(x,y))=22a4nx2y2+6a(4n4)x2y3+8a(28n16)x2y4+32a(9n213n+5)x3y3+12a(36n252n+24)x3y4+42a(36n252n+20)x4y4,SxaSya(f(x,y))=122a2nx2y2+16a(4n4)x2y3+18a(28n16)x2y4+132a(9n213n+5)x3y3+112a(36n252n+24)x3y4+142a(36n252n+20)x4y4,DxSy(f(x,y))=4nx2y2+23(4n4)x2y3+12(28n16)x2y4+(9n23n+5)x3y3+34(36n256n+24)x3y4+(36n252n+20)x4y4,SxDy(f(x,y))=4nx2y2+32(4n4)x2y3+2(28n16)x2y4+(9n23n+5)x3y3+43(36n256n+24)x3y4+(36n252n+20)x4y4,SxJf(x,y)=nx4+15(4n4)x5+16(28n16)x6+16(9n23n+5)x6+17(36n256n+24)x7+18(36n252n+20)x8,SxJDxDy(f(x,y))=4nx4+65(4n4)x5+43(28n16)x6+32(9n23n+5)x6+127(36n256n+24)x7+2(36n252n+20)x8,Sx3Q2JDx3Dy3f(x,y)=32nx2+8(4n4)x3+8(28n16)x4+72964(9n23n+5)x4+1728125(36n256n+24)x5+51227(36n252n+20)x6.

Now in view of Table 1, this gives:

  1. M1(D1(n)) = (Dx + Dy)(f (x, y))|x=y=1 = 594n2 − 682n + 242.

  2. M2(D1(n)) = DxDy (f (x, y))|x = y = 1 = 1089n2 − 1357n + 501.

  3. mM2(D1(n))=SxSy(f(x,y))|x=y=1=254n215136n+4136.

  4. Ra(D1(n))=DxaDya(f(x,y))|x=y=1=22a+2n+6a(4n4)+8a(28n16)+:+32a(9n213n+5)+12a(36n256n+24)+24a(36n252n+20).

  5. RRa(D1(n))=SxaSya(f(x,y))|x=y=1=122a2n16a(4n4)+123a(28n16)+132a(9n213n+5)+112a(36n256n+20)+124a(36n252n+20).

  6. SSD(D1(n))=(SyDx+SxDy)(f(x,y))|x=y=1==165n2160n+1543.

  7. H(D1(n))=2SxJ(f(x,y))|x=1=1567n21025n+692105.

  8. I(D1(n))=SxJDxDy(f(x,y))x=1=206114n2+520130n+13127210.

  9. A(D1(n))=Sx3Q2JDx3Dy3(f(x,y))x=1=3078831124000n21858527979216000n+130461491216000.

2.2 M-polynomial and topological indices of Dominating David Derived network of second type

Let D2 (n) be the dominating David derived network of the second type. From Figure 2, we infer the following vertex and edge partition (Table 4, 5)

Table 4

The vertex partition of D2(n).

Table 5

Edge partition of D2(n).

Theorem 3

Let D2 (n) be the dominating David derived network of the second type. Then the M-Polynomial of D2 (n) is M((D2(n);x,y)=4nx2y2+(18n222n+6)x2y3+(28n16)x2y4+(36n256n+24)x3y4+(36n252n+20)x4y4.

Proof

Let D2 (n) is the dominating David derived network of second type. It is easy to see form Figure 2 that there are three type of vertices in the vertex set of D2 (n): V1(D2(n))={uV(D2(n)):du=2},V2(D2(n))={uV(D2(n)):du=3},V3(D2(n))={uV(D2(n)):du=4},

with |V1(D2(n))|=9n2+7n5|V2(D2(n))|=18n226n+10

and |V3(D2(n))|=27n233n+12

Also the edge set of D2 (n) has five type of edges: E1(D2(n))={e=uvE(D2(n)):du=2,dv=2},E2(D2(n))={e=uvE(D2(n)):du=2,dv=3},E3(D2(n))={e=uvE(D2(n)):du=2,dv=4},E4(D2(n))={e=uvE(D2(n)):du=3,dv=4},E5(D2(n))={e=uvE(D2(n)):du=4,dv=4}

such that |E1 (D2 (n))| = 4n, |E2 (D2 (n))| = 18n2 − 22n + 6, |E3(D2(n)) = 28n − 16, |E4(D2(n))| = 36n2 − 56n + 24, and |E5 (D2(n))| = 36n2 − 52n + 20.

In light of the definition of the M-polynomial, it is deduced that M((D2(n));x,y)=ijmijxiyj=uvE1(D2(n))m22x2y2uvE2(D2(n))m23x2y3+uvE3(D2(n))m24x2y4+uvE4(D2(n))m34x3y4+uvE5(D2(n))m44x4y4=|E1(D2(n))|x2y2+|E2(D2(n))|x2y3+|E3(D2(n))|x2y4+|E4(D2(n))|x3y4+|E5(D2(n))|x4y4=4nx2y3+(18n222n+6)x2y3+(28n16)x2y4+(36n256n+24)x3y4+(36n252n+20)x4y4.

Figure 14 is plotted using Maple 15. This suggests that values obtained by M-polynomial show different behaviors corresponding to different parameters x and y. We can control these values through these parameters.

Plot of M1(D1(n)).
Figure 5

Plot of M1(D1(n)).

Plot of M2(D1(n)).
Figure 6

Plot of M2(D1(n)).

Plot of mM2(D1(n)).
Figure 7

Plot of mM2(D1(n)).

Plot of 
R12$\begin{array}{}
R_{\frac12}
\end{array} $ (D1(n)).
Figure 8

Plot of R12 (D1(n)).

Plot of RRα(D1(n)).
Figure 9

Plot of RRα(D1(n)).

Plot of SSD (D1(n)).
Figure 10

Plot of SSD (D1(n)).

Plot of H (D1(n)).
Figure 11

Plot of H (D1(n)).

Plot of I (D1(n)).
Figure 12

Plot of I (D1(n)).

Plot of A (D1(n)).
Figure 13

Plot of A (D1(n)).

Plot of M-Polynomial of Dominating David Derived Network of second Type.
Figure 14

Plot of M-Polynomial of Dominating David Derived Network of second Type.

Now some degree-based topologcal indices of the dominating David derived network of the second type are computed from this M-polynomial.

Proposition 4

Let D2 (n) be the dominating David derived network of the second type

  1. M1(D2(n)) = 630n2 − 734n + 262.

  2. M2 (D2 (n)) = 1116n2 − 1396n + 516.

  3. mM2(D2(n))=334n28512n+94.

  4. Rα(D2 (n)) = (6α18 + 12α36 +124α36)n2 + (22α+2 − 6α22 + 23α28 − 12α56 − 24α52 + 6α6 − 23α16 +12α24 + 24α 20.

  5. RRα(D2(n))=122α4n+16α(18n222n+6)+123α(28n16)++112α(36n256n+24)+124a(36n252n+20).

  6. SSD(D2(n))=186n212856n+2543.

  7. H(D2(n))=92735n241215n+1147105.

  8. I(D2(n))=543635n2277615n+7036105.

  9. A(D2(n))=496624375n256707363375n+21297443375.

Proof

Let M (D2(n); x, y) = f (x, y) = 4nx2 y3 + (18n2 − 22n + 6) x2 y3 + + (28n − 16) x2 y4 +(36n2 − 56n + 24) x3 y4 + (36n2 − 52n + 20) x4 y4.

Then, this yields Dx(f(x,y))=8nx2y2+2(18n222n+6)x2y3+2(28n16)x2y4+3(36n252n+24)x3y4+4(36n252n+20)x4y4,Dy(f(x,y))=8nx2y2+3(18n222n+6)x2y3+4(28n16)x2y4+4(36n252n+24)x3y4+4(36n252n+20)x4y4,(DxDy)(f(x,y))=16nx2y2+6(18n222n+6)x2y3+8(28n16)x2y4+12(36n252n+24)x3y4+16(36n252n+20)x4y4,SxSy(f(x,y))=nx2y2+16(18n222n+6)x2y3+18(28n16)x2y4+112(36n252n+24)x3y4+116(36n252n+20)x4y4,DxαDyα(f(x,y))=22α4nx2y2+6α(18n222n+6)x2y3+8α(28n16)x2y4+12α(36n252n+20)x4y4+42α(36n252n+24)x4y4,SxαSyα(f(x,y))=122α4nx2y2+16α(18n222n+6)x2y3+18α(28n16)x2y4+112α(36n252n+24)x3y4+142α(36n252n+20)x4y4,DxSy(f(x,y))=4nx2y2+23(18n222n+6)x2y3+12(28n16)x2y4+34(36n256n+24)x3y4+(36n252n+20)x4y4,SxDy(f(x,y))=4nx2y2+32(18n222n+6)x2y3+2(28n16)x2y4+43(36n256n+24)x3y4+(36n252n+20)x4y4,SxJf(x,y)=nx4+15(18n222n+6)x5+16(28n16)x6+17(36n256n+24)x7+18(36n252n+20)x8,SxJDxDy(f(x,y))=4nx4+65(18n222n+6)x5+43(28n16)x6+127(36n256n+24)x7+2(36n252n+20)x8,Sx3Q2JDx3Dy3f(x,y)=32m2+8(18n222n+6)x3+8(28n16)x4+1728125(36n256n+24)x5+51227(36n252n+20)x6,

Now from table 1

  1. M1(D2(n)) = (Dx + Dy)(f(x, y))|x=y=1 = = 630n2 − 734n + 262.

  2. M2(D2(n)) = DxDy(f(x, y))|x = y = 1 = 1116n2 − 1396n + 516.

  3. mM2(D2(n))=SxSy(f(x,y))|x=y=1=334n28512n+94.

  4. Rα(D2(n))=DxαDyα(f(x,y))|x=y=1=(6α1812α36124α36)n2+(22α+26α22+23α2812α5624α52)n+6α623α16+12α24+24α20.

  5. RRα(D2(n))=SxαSyα(f(x,y))|x=y=1==12α4n+16α(18n222n+6)+123α(28n16)+112α(36n256n+24)+124α(36n252n+20)

  6. SSD(D2(n))=(SyDX+SXDy)(f(x,y))|x=y=1==186n212856n+2543

  7. H(D2(n))=2SxJ(f(x,y))|x=1=92735n241215n+1147105.

  8. I(D2(n))=SxJDxDy(f(x,y))x=1=543635n2277615n+7036105

  9. A(D2(n))=Sx3Q2JDx3Dy3(f(x,y))|x=1=496624375n256707363375n+21297443375

2.3 M-polynomial and topological indices of Dominating David Derived networks of type three

Let G = D1(n) be the dominating David derived network of third type. By means of Figure 3, it is given that:

Theorem 5

Let D3 (n) be the dominating David derived network of the third type. Then the M-Polynomial of D3 (n) is

M(D3(n);x,y)=4nx2y2+(36n220n)x2y4+(72n2108n+44)x4y4.

Proof

Let D3(n) is the dominating David derived network of the third type. In view of Table 6, the vertex set of D3 (n) has two partitions:

V1(D3(n))={uV(D3(n)):du=2},V2(D3(n))={uV(D3(n)):du=4},

such that |V1(D3(n))| = 18n2 − 6n and |V2(D3(+))| = 45n2 − 59n + 22.

Table 6

The vertex partition of D3 (n).

Using Table 7, the edge set of D3 (n) has three partitions:

E1(D3(n))={e=uvE(D3(n)):du=2,dv=2},E2(D3(n))={e=uvE(D3(n)):du=2,dv=4},E3(D3(n))={e=uvE(D3(n)):du=4,dv=4},

which satisfy |E1 (D3 (n))| = 4n, |E2(D3(n))| = 36n2 − 20n and |E3(D3(n))| = 72n2 − 108n + 44.

Table 7

Edge partition of D3 (n).

Followed from the definition of the M-polynomial, we get

M(D3(n);x,y)=ijmijxiyj=uvE1(D3(n))m22x2y2+uvE2(D3(n))m24x2y4+uvE3(D3(n))m44x4y4=|E1(D1(n))|x2y2+|E2(D3(n))|x2y4+|E3(D3(n))|x4y4=4nx2y2+(36n220n)x2y4+(72n2108n+44)x4y4.

Figure 24 is plotted by using Maple 15. This suggests that values obtained by M-polynomial show different behaviors corresponding to different parameters x and y. We can control values of M-polynomial through these parameters.

Plot of M1 (D2(n)).
Figure 15

Plot of M1 (D2(n)).

Plot of M2 (D2(n)).
Figure 16

Plot of M2 (D2(n)).

Plot of mM2 (D2(n)).
Figure 17

Plot of mM2 (D2(n)).

Plot of R-1/2(D2(n)).
Figure 18

Plot of R-1/2(D2(n)).

Plot of RR-1/2(D2(n)).
Figure 19

Plot of RR-1/2(D2(n)).

Plot of SSD (D2(n)).
Figure 20

Plot of SSD (D2(n)).

Plot of H D2(n)).
Figure 21

Plot of H D2(n)).

Plot of I D2(n)).
Figure 22

Plot of I D2(n)).

Plot of A D2(n)).
Figure 23

Plot of A D2(n)).

Plot of M-Polynomial of Dominating David Derived Network of third Type.
Figure 24

Plot of M-Polynomial of Dominating David Derived Network of third Type.

Now some degree-based topologcal indices of Dominating David Derived Network of the third type are computed from this M-polynomial.

Proposition 6

Let D3(n) be the Dominating David Derived Network of the third type

  1. M1(D3(n)) = 792n2 − 968n + 352.

  2. M2(D3(n)) = 1440n2 − 1872n + 704.

  3. mM2(D3(n))=9n2334n+114.

  4. Rα(D3(n)) = 9(23α+2 + 24α+3)n2 + (22α+2 − 5⋅3a+2 + + 27 ⋅ 24α+2)n + 11⋅ 24α+2.

  5. RRα(D3(n))=(124α3+123α2)9n2+(122α2523α22724α2)n+1124α2.

  6. SDD(D3(n)) = 234n2 − 258n + 88.

  7. H(D3(n)) = 30n2 953 n + 11.

  8. I (D3 (n)) = 192n2 7163n + 88.

  9. A(D3(n)) =49603n22176n+2252827.

Proof

Let

M(D3(n);x,y)=f(x,y)=4nx2y2+(36n220n)x2y4++(72n2108n+44)x4y4

Then, derived from this

Dx(f(x,y))=8nx2y2+2(36n220n)x2y4+4(72n2108n+44)x4y4Dy(f(x,y))=8nx2y2+4(36n220n)x2y4+4(72n2108n+44)x4y4(DxDy)(f(x,y))=16nx2y2+8(36n220n)x2y4+16(72n2108n+44)x4y4SxSy(f(x,y))=nx2y2+18(36n220n)x2y4+116(72n2108n+44)x4y4.DxαDyα(f(x,y))=22α+2nx2y2+23α(36n220n)x2y4++24α(72n2108n+44)x4y4.SxαSyα(f(x,y))=122α2nx2y2123α+(36n220n)x2y4++124α(72n2108n+44)x4y4.DxSy(f(x,y))=4nx2y2+12(36n220n)x2y4+(72n2108n+44)x4y4.SxDy(f(x,y))=4nx2y2+2(36n220n)x2y4+(72n2108n+44)x4y4.SxJf(x,y)=nx4+16(36n220n)x6+18(72n2108n+44)x8.SxJDxDy(f(x,y))=4nx4+43(36n220n)x6+2(72n2108n+44)x8.SX3Q2JDx3Dy3f(x,y)=25623nx2+51243(36n220n)x4++409663(72n2108n+44)x6.

Now from Table 1

  1. Ml(D3(n)) = (Dx + Dy)(f(x, y))|x=y=1 = 792n2 − 968n + 352.

  2. M2(D3(n)) = DxDy(f(x,y))|x=y=1 =1728n2 − 2032n + 704.

  3. mM2(D3(n))=SXSy(f(x,y))|x=y=1=9n2334n+114

  4. Rα(D3(n))=DxαDyα(f(x,y))|x=y=1=9(23α+2++24a+3)n2+(22a+253a+2+2724a+2)n+1124a+2.

  5. RRa(D3(n))=SxaSya(f(x,y))|x=y=1==(124a3+123a2)9n2+(122a2523a22724a2)n+1124a2.

  6. SDD(D3 (n)) = (Sy Dx + Sx Dy )(f(x, y))|x=y=1 =

    = 234n2 − 258n + 88.

  7. H(D3(n))=2SXJ(f(x,y))|x=1=30n2953n+11.

  8. I(D3(n))=SxJDxDy(f(x,y))x=1=192n27163n+88.

  9. A(D3(n))=Sx3Q2JDx3Dy3(f(x,y))|x=1=49603n22176n+2252827.

Plot of M1(D3(n)).
Figure 25

Plot of M1(D3(n)).

Plot of M2(D3(n)).
Figure 26

Plot of M2(D3(n)).

Plot of mM2(D3(n)).
Figure 27

Plot of mM2(D3(n)).

Plot of R-1/2(D3(n)).
Figure 28

Plot of R-1/2(D3(n)).

Plot of RR-1/2(D3(n)).
Figure 29

Plot of RR-1/2(D3(n)).

Plot of SDD(D3(n)).
Figure 30

Plot of SDD(D3(n)).

Plot of H(D3(n)).
Figure 31

Plot of H(D3(n)).

Plot of I(D3(n)).
Figure 32

Plot of I(D3(n)).

Plot of A(D3(n)).
Figure 33

Plot of A(D3(n)).

3 Conclusion

M-polynomials of dominating David Derived networks of the first, second and third type were computed. Many degree-based topological indices of these networks form have been recovered from their M-polynomials. Note that first Zagreb index and some particular cases of Randic index was calculated directly in [1].

Reference

  • [1]

    Imran M., Baig A.Q., Ali H., On topological properties of dominating David derived networks. Canadian Journal of Chemistry, 2015, 94(2), 137-148. Web of ScienceGoogle Scholar

  • [2]

    Deutsch E., Klavzar S., M-Polynomial and degree-based topological indices. Iran. J. Math. Chem., 2015, 6, 93–102. Google Scholar

  • [3]

    Mihalić Z., Trinajstić N., A graph-theoretical approach to structure-property relationships. CRC press, 1992.Google Scholar

  • [4]

    Star of David [online]. Available from http.//Wikipedia.org/wiki/starofDavid

  • [5]

    Simonraj F., George A., GRAPH-HOC 2012. 4. 11. . CrossrefGoogle Scholar

  • [6]

    Munir M., Nazeer W., Rafique S., Kang S.M., M-polynomial and related topological indices of Nanostar dendrimers. Symmetry., 2016, 8(9), 97, 10.3390/sym8090097. Web of ScienceCrossrefGoogle Scholar

  • [7]

    Munir M., Nazeer W., Rafique S., Nizami A.R., Kang S.M., M-polynomial and degree-based topological indices of titania nanotubes. Symmetry., 2016, 8(11), 117, 10.3390/sym8110117. CrossrefGoogle Scholar

  • [8]

    Munir M., Nazeer W., Rafique S., Kan S.M., M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes. Symmetry., 2016, 8(12), 149, 10.3390/sym8120149. Web of ScienceCrossrefGoogle Scholar

  • [9]

    Riaz M., Gao W., Baig A.Q., M-POLYNOMIALS AND DEGREEBASED TOPOLOGICAL INDICES OF SOME FAMILIES OF CONVEX POLYTOPES. Open J. Math. Sci., 2018, In Press. Google Scholar

  • [10]

    Munir M., Nazeer W., Shahzadi S., Kang S.M., Some invariants of circulant graphs. Symmetry, 2016, 8(11), 134, 10.3390/sym8110134. CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Kwun Y.C., Munir M., Nazeer W., Rafique S., Kang S.M., M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori. Scientific reports, 2017, 7, 8756. Web of ScienceCrossrefPubMedGoogle Scholar

  • [12]

    Wiener H., Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69, 17–20. CrossrefPubMedGoogle Scholar

  • [13]

    Randić M., On characterization of molecular branching. J. Am. Chem. Soc., 1975, 97, 6609–6615. CrossrefGoogle Scholar

  • [14]

    Bollobas B., Erdos P., Graphs of extremal weights. Ars. Combin., 1998, 50, 225–233. Google Scholar

  • [15]

    Amic D., Beslo D., Lucic B., Nikolic S., Trinajstić N., The Vertex-Connectivity Index Revisited. J. Chem. Inf. Comput. Sci., 1998, 38, 819–822. CrossrefGoogle Scholar

  • [16]

    Randić M., On History of the Randić Index and Emerging Hostility toward Chemical Graph Theory. MATCH Commun. Math. Comput. Chem., 2008, 59, 5-124. Google Scholar

  • [17]

    Randić M., The Connectivity Index 25 Years After. J. Mol. Graphics Modell., 2001, 20, 19–35. CrossrefGoogle Scholar

  • [18]

    Huang Y., Liu B., Gan, L., Augmented Zagreb Index of Connected Graphs. MATCH Commun. Math. Comput. Chem., 2012, 67, 483-494. Google Scholar

  • [19]

    Furtula B., Graovac A., Vukičević D., Augmented Zagreb index. J. Math. Chem., 2010, 48, 370–380. Web of ScienceCrossrefGoogle Scholar

  • [20]

    Gao W., Wang Y.Q., Basavanagoud B., and Jamil M.K., Characteristics studies of molecular structures in drugs. Saudi Pharmaceutical J., 2017, 25, 580-586. CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Gao W., Wang W.F., The eccentric connectivity polynomial of two classes of nanotubes. Chaos Soliton. Fract., 2016, 89, 290–294. Web of ScienceCrossrefGoogle Scholar

  • [22]

    Sardar M.S., Zafar, S., Farahani M.R., The Generalized Zagreb Index of Capra-Designed Planar Benzenoid Series $Ca_K(C_6)$, Open J. Math. Sci., 2017, 1, 44-51. CrossrefGoogle Scholar

  • [23]

    Matti ul Rehman H., Sardar, M.R., Raza, A., Computing Topological Indices of Hex Board and iIts Line Graph, Open J. Math. Sci., 2017, 1, 62-71. CrossrefGoogle Scholar

  • [24]

    Sardar M.S., Pan X.F., Gao W., Farahani M.R., Computing Sanskruti Index Of Titania Nanotubes, Open J. Math. Sci., 2017, 1, 126–131. CrossrefGoogle Scholar

  • [25]

    De N., Hyper Zagreb Index of Bridge and Chain Graphs, Open J. Math. Sci., 2018, 2(1), 1-17. Google Scholar

  • [26]

    Gao W., Muzaffar B., Nazeer W., K-Banhatti and K-Hyper Banhatti Indices of Dominating David Derived Network, Open J. Math. Anal., 2017, 1, 13-24. Google Scholar

  • [27]

    Siddiqui H., Farahani M. R., Forgotten Polynomial and Forgotten Index of Certain Interconnection Networks, Open J. Math. Anal., 2017, 1, 45-60. Google Scholar

About the article

Received: 2017-08-21

Accepted: 2018-01-27

Published Online: 2018-03-20


Conflict of interest: Authors state no conflict of interest


Citation Information: Open Chemistry, Volume 16, Issue 1, Pages 201–213, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2018-0023.

Export Citation

© 2018 Shin Min Kang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Waqas Nazeer, Adeel Farooq, Muhammad Younas, Mobeen Munir, and Shin Kang
Biomolecules, 2018, Volume 8, Number 3, Page 92
[2]
Emeric Deutsch and Sandi Klavžar
Journal of Applied Mathematics and Computing, 2018

Comments (0)

Please log in or register to comment.
Log in