Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 16, Issue 1

Issues

Volume 13 (2015)

Nickel doping effect on the structural and optical properties of indium sulfide thin films by SILAR

Fatma Göde / Serdar Ünlü
Published Online: 2018-08-20 | DOI: https://doi.org/10.1515/chem-2018-0089

Abstract

Undoped and nickel doped indium sulfide (In2S3:Ni) thin films have been deposited on indium tin oxide (ITO) coated glass substrates by successive ionic layer adsorption and reaction (SILAR) method. The doping concentration of Ni has been adjusted as 4%, 5% and 6% (in molar ratio of nickel ions to indium ions). The effects of Ni doping on the structural, morphological, compositional and optical properties of the In2S3 thin films are investigated. The x-ray diffraction patterns show that deposited film has cubic structure with amorphous nature of In2S3 and its crystallinity deteriorates with increasing doping concentration. The SEM measurements show that the surface morphology of the films is affected from the Ni incorporation. The direct band gap of the films decreases from 2.33 eV to 1.61 eV with increasing Ni dopant. Energy dispersive x-ray spectroscopy (EDS) has been used to evaluate the chemical composition and shown that S/(Ni+In) ratio in films decreases from 1.18 to 0.40 with Ni content. Optical properties of the films have been performed by a UV-Vis spectrophotometer. The direct band gap of the films decreases from 2.33 eV to 1.61 eV with increasing Ni dopant. Moreover, optical parameters of the films such as refractive index (𝑛), extinction coefficient (k), real (ε1) and imaginary (ε2) parts of dielectric constant have been determined by using absorbance and transmittance spectra. The investigations showed that the Ni doping has a significant effect on the physical properties of SILAR produced In2S3 thin films.

Keywords: doping; thin films; optical constant; growth from solutions

1 Introduction

Indium sulfide (In2S3) as a III-VI group semiconductor compound with α (cubic), β (tetragonal) and γ (trigonal) crystalline phases is an interesting material because of its remarkable properties such as stability, transparency, photoconductive nature, large band gap changing between 2.10 eV [1] and 3.91 eV [2], n-type conductivity [3] and low hazard material compared with cadmium sulfide, cadmium selenide [4], and cadmium telluride. Among these three crystalline phases, β-In2S3 is the most stable one at room temperature. It is an ideal material used as a layer in CuInS2 (CIS), Cu(In, Ga)Se2 (CIGSe), and CdTe-based thin film solar cells [5]. Many researchers have been trying to tune the optical and electrical properties of In2S3 by doping thin films for thin film solar cells applications. It is well known that metal dopant acts as electron donors in semiconductor thin films [6] and leads to more electrons available in the valence band.

In the previous work. we deposited In2S3 thin films with different complex agent volume, triethanolamine (TEA), on microscope glass substrates at room temperature using the chemical bath deposition technique (CBD) [7]. There are many works on In2S3 thin films doped with elements such as Sn [8], Co [9], A1 [10], As, Sb or Bi [11], Na [12], Cu [13] and Ag [14]. However, there is no attempt on nickel doping of the In2S3 thin films. In this work, undoped and Ni doped indium sulphide (In2S3:Ni) thin films have been synthesized on indium tin oxide (ITO) coated glass substrates for the first time. The present work is focused on the changes in the structural, morphological, compositional and optical properties of the In2S3 thin film when doped with Ni dopants. Undoped and Ni doped films have been synthesized using a simple and inexpensive SILAR technique which provides easy coating of the samples at room temperature [15,16]. In this technique, thin films are obtained by dipping substrate into separately placed cationic and anionic precursors, and then rinsing with deionized water after each immersion. The deposition rate and the thickness of the film may be easily controlled by changing the deposition cycles of SILAR.

2 Experimental Details

The In2S3:Ni thin films have been deposited on indium tin oxide (ITO) coated glasses with sheet resistances of 9.5 Ω/square (76 mm × 26 mm × 1 mm) at room temperature by SILAR method. For the deposition of these films, the concentration of nickel ions is adjusted by controlling the quantity of nickel chloride in the mixture, varying as 0%, 4%, 5% and 6% (in molar ratio of nickel ions to indium ions). Before the deposition, the substrates have been initially washed by detergent, boiled in deionized water, and cleaned in methanol, acetone and deionized water for 10 min sequentially. Following air drying, the deposition of In2S3:Ni thin films were carried out at room temperature. The ITO substrate was immersed in cation precursor solution, containing 0.1 M indium (III) acetate [In(CH3COO)3; Merck; 99.99% purity; pH ~ 4.02] and 0.1 M nickel (II) chloride (NiCl2 + 6H2O; Merck; ACS. Reag.) for 40 s, and then rinsed with deionized water for 40 s before it was immersed in solutions containing 0.05 M sodium thiosulfate [Na2S2O3 5H2O]; 99.5% - 100.5% purity; pH ~ 10.62] for additional 40 s. The substrate was rinsed again with deionized water for 40 s to remove the unreacted ions. By repeating above SILAR steps for 70 times and 75 times for undoped and doped films respectively, thin film of In2S3:Ni was deposited on ITO substrate.

XRD patterns were carried out using x-ray diffractometer with CuKa radiation (XRD, Bruker/AXS-D8, λ = 1.5406 Å) in the 2θ range from 20° to 70°, whileurface morphology was studied by scanning electron microscope (SEM, EVO40-LEO). The elemental composition of the films wasexamined using energy dispersive x-ray spectroscopy (EDS) attached to the SEM. For the optical transmittance measurements, a Perkin Elmer Lambda 4S UV-Vis spectrophotometer in the wavelength range of 400–1100 nm at room temperature has been used. Film thicknesses (t) were determined gravimetrically with a precision microbalance by assuming the density of bulk In2S3 as 4.845 g cm–3. Film thickness shows a reduction with increasing Ni concentration as seen in Table 1.

Table 1

Preparation conditions of In2S3 :Ni thin films.

Ethical approval: The conducted research is not related to either human or animals use.

3 Results and Discussions

Figure 1 shows the diffraction patterns of ITO substrate and the In2S3:Ni thin films. Deposited films are amorphous in nature. When compared with the standard 2Θ and d values, it can be concluded that the obtained film is cubic In2S3 structure (JCPDS card no. 65-0459). As can be seen in Figure 1, the substrate effect is more dominant in the films deposited at Ni concentration of 0% and 4%. However, the crystallinity of the film deteriorates more with increasing Ni incorporation and results with disappearing of diffraction peaks coming from substrate in the film deposited at 6% Ni dopant. Our XRD results are in agreement with the literature [13] and [17] in which Mane et al. reported cubic structure with amorphous nature of In2S3 films on glass substrates using SILAR method.

X-ray diffraction patterns of In2S3:Ni thin films.
Figure 1

X-ray diffraction patterns of In2S3:Ni thin films.

The surface morphology of ITO substrate and In2S3:Ni thin films are shown in Figure 2. As can be seen, the surface of the films shows granular structure with cracks.

SEM micrographs of ln2S3:Ni thin films obtained at 100 k×magnification.
Figure 2

SEM micrographs of ln2S3:Ni thin films obtained at 100 k×magnification.

The compositional analysis of In2S3:Ni thin films was performed by EDS and the results are listed in Table 2. The EDS results confirm the presence of O, In, S and Ni elements in the synthesized films. It can be seen that the deposited films show excess of oxygen increasing with increasing Ni content. This is an expected result because of the aqueous solution method used. Kamoun et al. [10] reported that the presence of Al leads to an increment in adsorption of oxygen in the sample. The average ratio for atomic percentage of S/ (In+Ni) is 1.18 for deposited films and it decreases to a value of 0.40 with increasing Ni dopant.

Table 2

The EDS analysis of In2S3:Ni thin films.

In order to examine the effect of doping on the optical properties of the films, the absorbance and transmittance measurements were performed at room temperature in the wavelength range 400–1100 nm as shown in Figure 3. The films exhibit average transmittance between 47% and 74% and in the visible region.

(a) The absorbance and (b) transmittance spectra of In2S3:Ni thin films.
Figure 3

(a) The absorbance and (b) transmittance spectra of In2S3:Ni thin films.

In order to calculate the band gap of the films, optical absorption of the films wass studied at room temperature The absorption coefficient (α) of the films was calculated from the normalized transmittance (T) data using the formula:

α=1tln(T)(1)

where t is the film thickness. The band gap energy (Eg) is determined using the Tauc’s relation:

αhν=K(hνEg)n(2)

where K is a constant depending on transition probability, hv is a photon energy, Eg is the optical band gap, n is an index that characterizes the optical absorption process and theoretically equal to 1/2 for allowed direct transition and 2 for indirect transition [18].Figure 4 shows the plot of (ahv)2 versus photon energy for the films. The optical band gaps of the films were determined from the intercept of (ahv)2 versus hv curves and obtained Eg values are given in Table 3. The optical band gaps of the films decrease from 2.33 eV to 1.61 eV and shift towards the red region as the Ni concentration in the films increases, where as Barreau et al. [3,l2] found that the optical band gaps of In2S3 thin films, grown by physical vapor deposition, increased from 2.10 eV to 2.95 eV with increasing Na concentration. The shifting in Eg of the films may be attributed to the band shrinkage effect. The narrowing band gap energy is due to the existence of Ni impurities in the In2S3 structure, which induce the introduction of shallow donor levels due to doping. This red shift of Eg could be an increase in carrier concentration with Ni doping. Moreover, a red shift is attributed to a reduction in S concentration (an increase in sulfur vacancies), detected from compositional analysis in Table 2, leads to a reduction in the optical energy gap for In2S3: Ni thin films. The measured band gaps are consistent with reported values 2.3 eV [16]. Timoumi et al. [19] reported a band gap changing between 1.61 eV and 2.19 eV for In2S3 thin films deposited on glass substrates by vacuum thermal evaporation method.

Plot of (ahv)2 versus (hv) In2S3:Ni thin films.
Figure 4

Plot of (ahv)2 versus (hv) In2S3:Ni thin films.

Table 3

Optical parameters for In2S3:Ni thin films (λ =600 nm).

The transmittance and absorbance data were used to calculate the optical constants such as refractive index (n), extinction coefficient (k), real (ε1) and imaginary (ε2) parts of dielectric constant. The n is described by the Fresnel formulae [20]:

n=1+R1R+4R(1R)2k2(3)

where R is the reflectance and k is given by αλ/4π. The dependence of n and k on wavelength for the films are shown in Figures 5(a) and (b), respectively and results are listed in Table 3. At λ = 600 nm, the n value of deposited films first increases from 1.84 to 2.33 and then decreases to the value of 1.82 with Ni concentration. The present n values are also in good agreement with the literature for In2S3 thin films (1.6–1.84) [21] and (2.5) [22]. Esmaili et al. [13] found the n value between 1.0 and 2.5 for In2S3:Cu thin films deposited by CBD. The k values are consistent with our previous data (0.33–0.72) [7] but they are lower than Ref. [13] in which In2S3:Cu thin films were deposited by CBD. At λ = 600 nm, the k value varies between 0.18 and 0.43 with the increase in Ni concentration. The k values are consistent with the reported data obtained by Kaleel et al. [23] in which In2S3:Cu thin films were obtained by spray pyrolysis method.

The variation of (a) refractive index, (b) extinction coefficient, (c) real and (d) imaginary dielectric constant for In2S3:Ni thin films.
Figure 5

The variation of (a) refractive index, (b) extinction coefficient, (c) real and (d) imaginary dielectric constant for In2S3:Ni thin films.

The ε1 and ε2 were calculated by using Eqs. (4) and (5):

ε1=n2k2(4)

ε2=2nk(5)

Figures 5(c) and (d) show the plots of ε1 and ε1, irrespectively. At λ =600 nm, the ε1 value first increases from 3.35 to 5.26 and then decreases to the value of 3.26 with Ni concentration. The ε2 value varies between 0.64 and 2.00 as seen in Table 3. Both ε1 and ε2 values are consistent with the previous data [7,23].

4 Conclusions

In2S3:Ni thin films are deposited on ITO substrate by SILAR technique. The SILAR is a simple and economic technique and useful for large area thin film depositions with low cost. The effect of Ni dopant on the structural, morphological, optical and electrical properties is studied. The S/(In+Ni) ratio in the films decreases from 1.18 to 0.40 with Ni content. The XRD result shows that deposited films have cubic structure with amorphous nature of In2S3 and their crystallinity deteriorates with increasing doping concentration. The Eg values of the films are affected from the incorporation of Ni and resulted a reduction with Ni doping. The optical parameters such as refractive index, extinction coefficient, real and imaginary parts of dielectric constant were determined. These results show that the Ni doping modifies the structural, morphological and optical properties of the In2S3 thin films.

Acknowledgement

This work has been supported by the Management Unit of Scientific Research Projects of Mehmet Akif Ersoy University (project no. 0201-NAP-13).

References

  • [1]

    Robles R., Barreau N., Vega A., Marsillac S., Bernède J.C., Mokrani A., Optical properties of large band gap b-In2S3-3xO3x compounds obtained by physical vapour deposition, Opt. Mater., 2005, 27, 647-653. CrossrefGoogle Scholar

  • [2]

    Zhong Z.Y., Cho E.S., Kwon S.J., Effect of substrate temperatures on evaporated In2S3 thin film buffer layers for Cu(In, Ga)Se2 solar cells, Thin Solid Films, 2013, 547, 22-27. CrossrefGoogle Scholar

  • [3]

    Barreau N., Bernède J.C., Marsillac S., Amory C., Shafarman W.N., New Cd-free buffer layer deposited by PVD: In2S3 containing Na compounds, Thin Solid Films, 2003, 431-432, 326-329. CrossrefGoogle Scholar

  • [4]

    Kariper i.A., Bağlayan ö., Göde F., Fabrication and optical characterization of CdSe thin films grown by chemical bath deposition, Acta Phys. Pol. A, 2015, 127(2B), 219-221. Web of ScienceGoogle Scholar

  • [5]

    Mughal M.A., Engelken R., Sharma R., Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells, Sol. Energy, 2015, 120, 131-146. CrossrefWeb of ScienceGoogle Scholar

  • [6]

    Keio M.E., Kamimura H., Comprehensive semiconductor science and technology, In: Bhattacharya P., Fornari R, Kamimura H. (Eds.), vol. 1, Elsevier, Netherlands, 1989. Google Scholar

  • [7]

    Göde F., Kariper I.A., Güneri E., Ünlü S., Effect of complexing agent on the structural, optical and electrical properties of polycrystalline indium sulfide thin films deposited by chemical bath deposition, Acta Phys. Pol. A, 2017, 132(3), 527-530. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    Mathew M., Gopinath M., Kartha C.S., Vijayakumar K.P., Kashiwaba Y., Abe T., Tin doping in spray pyrolysed indium sulfide thin films for solar cell applications, Solar Energy, 2010, 84 888-897. Web of ScienceCrossrefGoogle Scholar

  • [9]

    Kim C.D., Lim H., Park H.L., Park H.Y., Kim J.E, Kim H.G., et al., Optical absorption of Co2+ ions in In2S3 thin films, Thin Solid Films, 1993, 224(1,25), 69-73. CrossrefGoogle Scholar

  • [10]

    Kamoun N., Belgacem S., Amlouk M., Bennaceur R., Bonnet J., Touhari F., et al., Structure, surface composition, and electronic properties of b-In2S3 and b-In2–xAlxS3, J. Appl. Phys., 2001, 89(5), 2766-2771. CrossrefGoogle Scholar

  • [11]

    Diehl R., Nitsche R., Vapour and flux growth of g-In2S3, a new modification of insium sesquisulphide, J. Cryst. Growth, 1973, 20(1), 38-46. CrossrefGoogle Scholar

  • [12]

    Barreau N., Bernede J.C., Deudon C., Brohan L., Marsillac S., Study of the new b-In2S3 containing Na thin films Part I: Synthesis and structural characterization of the material, J. Cryst. Growth, 2002, 241, 4-14. CrossrefGoogle Scholar

  • [13]

    Esmaili P., Kangarlou H., Savaloni H., Ghorannevis M., Structural, optical and electronic properties of indium sulphide compositions under influence of copper impurity produced by chemical method, Res. Phys., 2017, 7, 3380-3389. Google Scholar

  • [14]

    Mathew M., Jayakrishnan R., Ratheesh Kumar P.M., Sudha Kartha C., Vijayakumar K.P., Anomalous behavior of silver doped indium sulfide thin films, J. Appl. Phys., 2006, 100(3), 33504-335018. CrossrefGoogle Scholar

  • [15]

    Güneri E., Göde F., Çevik S., Influence of grain size on structural and optic properties of PbS thin films produced by SILAR method, Thin Solid Films, 2015, 589, 578-583. Web of ScienceCrossrefGoogle Scholar

  • [16]

    Huerta-Flores A.M., García-Gómez N.A., De la Parra S.M., Sánchez E.M., Comparative study of Sb2S3, Bi2S3, In2S3 thin film deposition on TiO2 by successive ionic layer adsorption and reaction (SILAR) method, Mater. Sci. Semicon. Proc., 2015, 37, 235-240. Web of ScienceCrossrefGoogle Scholar

  • [17]

    Mane R.S., Lokhande C.D., Studies on structural, optical and electrical properties of indium sulfide thin films, Mater. Chem. Phys., 2003, 78, 15-17. CrossrefGoogle Scholar

  • [18]

    Tauc T., Amorphous and Liquid Semiconductors, Plenum Press, New York, 1974. Google Scholar

  • [19]

    Timoumi A., Bouzouita H., Brini R., Kanzari M., Rezig B., Optimization of annealing conditions of In2S3 thin films deposited by vacuum thermal evaporation, Appl. Surf. Sci., 2006, 253, 306-310. CrossrefGoogle Scholar

  • [20]

    Abeles F., (Ed.), Optical Properties of Solids, North-Holland Publishing Company, London, UK, 1972. Google Scholar

  • [21]

    John T.T., Kartha C.S., Vijayakumar K.P., Abe T., Kashiwaba Y., Spray pyrolyzed b-In2S3 thin films: Effect of postdeposition annealing, Vacuum, 2006, 80, 870-875. CrossrefGoogle Scholar

  • [22]

    Wang S.S., Shiou F.J., Tsao C.C., Huang S.W., Hsu C.Y., An evaluation of the deposition parameters for indium sulfide (In2S3) thin films using the Grey-Based Taguchi method, Mat. Sci. Semicon. Proc., 2013, 16, 1879-1887. CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Kaleel S.G., Suhail M.H., Yasser F.M., Spray Deposition of Cu: In2S3 thin films, I. J. Emerging Technol. Advanced Eng., 2014, 4(3), 613-622. Google Scholar

About the article

Received: 2018-01-22

Accepted: 2018-04-13

Published Online: 2018-08-20


Conflict of interest: Authors state no conflict of interest.


Citation Information: Open Chemistry, Volume 16, Issue 1, Pages 757–762, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2018-0089.

Export Citation

© 2018 Fatma Göde, Serdar Ünlü, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ali M. Khalifa, S.A. Abdulateef, Fayroz A. Sabah, E.A. Kabaa, and Naser M. Ahmed
Materials Science in Semiconductor Processing, 2019, Volume 103, Page 104626
[2]
Mehdi Souli, Yassine Bensalem, Mihail Secu, Cristina Bartha, Monica Enculescu, Arbi Mejri, Najoua Kamoun-Turki, and Petre Badica
Results in Physics, 2019, Volume 13, Page 102115

Comments (0)

Please log in or register to comment.
Log in