[1]
Wiener, H. J, Structural determination of paraffin boiling points Journal of the American Chemical Society, vol. 69, no. 1, pp. 17-20, 1947. CrossrefPubMedGoogle Scholar
[2]
Hosoya, H., Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons Bulletin of the Chemical Society of Japan, 44, 9, 1971, 2332-2339. CrossrefGoogle Scholar
[3]
Hosoya, H., On some counting polynomials in Chemistry Disc. Appli. Math, 19, 1988, pp. 239-257. CrossrefGoogle Scholar
[4]
Gutman, I.; Trinajstic, N, Graph theory, and molecular orbitals total f-electron energy of alternant hydrocarbons Chem. Phys. Lett. 1972, 17, 535-538. CrossrefGoogle Scholar
[5]
Klavzar, S.; Deutsch, E. M-Polynomial, and Degree-Based Topological Indices Iranian J. Math. Chem, 2015, 6(2),93-102. Google Scholar
[6]
Munir, M., Nazeer, W., Rafique, S., And Kang, S. M., M-polynomial and degree-based topological indices of Nano star dendrimers Symmetry 2016, 8, 97. doi:10.3390/sym8090097. CrossrefGoogle Scholar
[7]
Munir, M., Nazeer, W., Rafique, S., Nizami, A. R., And Kang, S. M., M-polynomial and degree-based topological indices of Titania Nanotubes Symmetry 2016, 8, 117; doi:10.3390/sym8110117. Google Scholar
[8]
Munir, M., Nazeer, W., Rafique, S., And Kang, S. M., M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes Symmetry. 8(12), 149; 10.3390/sym8120149 (2016). CrossrefWeb of ScienceGoogle Scholar
[9]
Kwun, Y. C., Munir, M., Nazeer, W., Rafique, S., and Kang, S. M., M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori Scitific Reports | 7: 8756 | Doi:10.1038/s41598-017-08309-y. Google Scholar
[10]
Rucker, G. , Rucker, C.,, On topological indices, boiling points, and cycloalkanes J. Chem. Inf. Comput. Sci. (1999) 39, 788. CrossrefGoogle Scholar
[11]
Kang, S. M, Nazeer, W.; Manzoor, Z.; Nizami A. R., Aslam, A., and Munir, M., M-polynomials and topological indices of hex-derived networks, Open Physics. 2018, 16 394-403. CrossrefWeb of ScienceGoogle Scholar
[12]
Ashaq, A., Nazeer, W., Munir, M., Kang, S. M., M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems, Open Chemistry 2018, 16 73-78. CrossrefWeb of ScienceGoogle Scholar
[13]
Gutman, I..Molecular graphs with minimal and maximal Randic indices. Croatica Chem. Acta (2002)75, 357-369. Google Scholar
[14]
Gutman, I.. Degree-based topological indices. Croat. Chem. Acta (2013)86, 351-361. Web of ScienceCrossrefGoogle Scholar
[15]
Akhter, S., Imran, M., Gao, W., Farahani, R., On topological indices of honeycomb networks and graphene networks Hac. Jour. Math. Stat. 2018, 47 19-35. Google Scholar
[16]
Rajan, B., William, A., Grigorious, C., Stephen, S., On Certain Topological Indices of Silicate, Honeycomb and Hexagonal Networks J. Comp. Math. Sci. 2012, 3 530-535. Google Scholar
[17]
Tabar. F., Gutman, I., Nasiri, R. , Extremely irregular trees Bull. Cl. Sci. Math. Nat.Sci.Math. 145 (2013), 1-8.Google Scholar
[18]
Furtula, B., Gutman, I.,, A forgotten topological index J. Math. Chem. 53 (2015), 1184-1190.CrossrefGoogle Scholar
[19]
Shirdel, G. H, Pour, H. R, Sayadi, A. M., The hyper-Zagreb index of graph operations Iran. J. Math. Chem. 4(2) 2013, 213-220.Google Scholar
[20]
Ghorbani, A., Azimi, N.,, Note on multiple Zagreb indices Iran. J. Math. Chem. 3 (2), (2012) 137-143.Google Scholar
[21]
Albertson, M., The irregularity of a graph Ars. Combin. 46, (1997), 219-225.Google Scholar
[22]
Bell, F., A note on the irregularity of graphs Linear Algebra Appl. 161, (1992), 45-54.CrossrefGoogle Scholar
[23]
Milicevic, A., Nikolic, S., Trinajstic, N., On reformulated Zagreb indices Mol. Diversity. 8, (2004), 393-399.CrossrefGoogle Scholar
[24]
Doslic, T.,Vertex-weighted Wiener polynomials for composite graphs Ars. Math. Contemp. 1, (2008), 66-80.Web of ScienceCrossrefGoogle Scholar
[25]
Gutman, I., Furtula, B., Vukicevic, Z., Popivoda, G.,, (2015) ON AN Old / New Degree-Based Topological Index Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.). 2015, 19-31.
[26]
Hao, J., Theorems about Zagreb Indices and Modified Zagreb Indices. Match Commun. Math. Comput. Chem. 2011, 65, 659-670.Google Scholar
[27]
Bruckler, F. M., Doslic, T., Graovac, A., Gutman, I. (2011) On a class of distance-based molecular structure descriptors Chem. Phys. Lett. 503, 336-338.CrossrefWeb of ScienceGoogle Scholar
[28]
Deng, H., Yang, J., Xia, F., A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes Comp. Math. Appl. (2011) 61, 3017-3023.CrossrefGoogle Scholar
[29]
Huang, Y., Liu, B., Gan, L.,, Augmented Zagreb Index of Connected Graphs Match Commun. Math. Comput. Chem. 67 (2012) 483-494Google Scholar
[30]
Kier, L. B., Hall, L. H.,, Molecular Connectivity in Structure-Activity Analysis (Wiley, New York, 1986).Google Scholar
[31]
Gutman, I., Furtula, B., Vukicevic, Z., Popivoda, G., On Zagreb indices and coindices Match Commun. Math. Comput. Chem, 74(1), 5-1,(2015).Google Scholar
[32]
Bieri, G., Dill, J. D., Heilbronner, E., Schmelzer, A., Application of the Equivalent Bond Orbital Model to the C2s-Ionization Energies of Saturated Hydrocarbons Helv. Chim. Acta 1977, 60, 2234-2247.CrossrefGoogle Scholar
[33]
Heilbronner, E., A Simple Equivalent Bond Orbital Model for the Rationalization of the C2s-Photoelectron Spectra of the Higher n-Alkanes, in Particular of Polyethylene Helv. Chim. Acta 1977, 60, 2248-2257.CrossrefGoogle Scholar
[34]
Kwun, Y.C., Munir, M., Nazeer, W., Rafique, S., Kang, S.M, Computational Analysis of topological indices of two Boron Nanotubes 8, 1, 2018. Google Scholar
[35]
Hussain, Z., Munir, M., Rafique, S. Kang, S. M., Topological Characterizations and Index-Analysis of New Degree-Based Descriptors of Honeycomb Networks Symmetry 2018, 10, 478. CrossrefWeb of ScienceGoogle Scholar
Comments (0)