[1]

Wiener, H. J, *Structural determination of paraffin boiling points* Journal of the American Chemical Society, vol. 69, no. 1, pp. 17-20, 1947. CrossrefPubMedGoogle Scholar

[2]

Hosoya, H., *Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons* Bulletin of the Chemical Society of Japan, 44, 9, 1971, 2332-2339. CrossrefGoogle Scholar

[3]

Hosoya, H., *On some counting polynomials in Chemistry* Disc. Appli. Math, 19, 1988, pp. 239-257. CrossrefGoogle Scholar

[4]

Gutman, I.; Trinajstic, N, *Graph theory, and molecular orbitals total f-electron energy of alternant hydrocarbons* Chem. Phys. Lett. 1972, 17, 535-538. CrossrefGoogle Scholar

[5]

Klavzar, S.; Deutsch, E. M-Polynomial, and Degree-Based Topological Indices Iranian J. Math. Chem, 2015, 6(2),93-102. Google Scholar

[6]

Munir, M., Nazeer, W., Rafique, S., And Kang, S. M., *M-polynomial and degree-based topological indices of Nano star dendrimers* Symmetry 2016, 8, 97. doi:10.3390/sym8090097. CrossrefGoogle Scholar

[7]

Munir, M., Nazeer, W., Rafique, S., Nizami, A. R., And Kang, S. M., *M-polynomial and degree-based topological indices of Titania Nanotubes* Symmetry 2016, 8, 117; doi:10.3390/sym8110117. Google Scholar

[8]

Munir, M., Nazeer, W., Rafique, S., And Kang, S. M., *M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes* Symmetry. 8(12), 149; 10.3390/sym8120149 (2016). CrossrefWeb of ScienceGoogle Scholar

[9]

Kwun, Y. C., Munir, M., Nazeer, W., Rafique, S., and Kang, S. M., *M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori* Scitific Reports | 7: 8756 | Doi:10.1038/s41598-017-08309-y. Google Scholar

[10]

Rucker, G. , Rucker, C.,, *On topological indices, boiling points, and cycloalkanes* J. Chem. Inf. Comput. Sci. (1999) 39, 788. CrossrefGoogle Scholar

[11]

Kang, S. M, Nazeer, W.; Manzoor, Z.; Nizami A. R., Aslam, A., and Munir, M., M-polynomials and topological indices of hex-derived networks, *Open Physics*. 2018, *16* 394-403. CrossrefWeb of ScienceGoogle Scholar

[12]

Ashaq, A., Nazeer, W., Munir, M., Kang, S. M., M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems, *Open Chemistry* 2018, *16* 73-78. CrossrefWeb of ScienceGoogle Scholar

[13]

Gutman, I..Molecular graphs with minimal and maximal Randic indices. Croatica Chem. Acta (2002)75, 357-369. Google Scholar

[14]

Gutman, I.. Degree-based topological indices. Croat. Chem. Acta (2013)86, 351-361. Web of ScienceCrossrefGoogle Scholar

[15]

Akhter, S., Imran, M., Gao, W., Farahani, R., *On topological indices of honeycomb networks and graphene networks* Hac. Jour. Math. Stat. 2018, *47* 19-35. Google Scholar

[16]

Rajan, B., William, A., Grigorious, C., Stephen, S., *On Certain Topological Indices of Silicate, Honeycomb and Hexagonal Networks* J. Comp. Math. Sci. 2012, *3* 530-535. Google Scholar

[17]

Tabar. F., Gutman, I., Nasiri, R. , *Extremely irregular trees* Bull. Cl. Sci. Math. Nat.Sci.Math. 145 (2013), 1-8.Google Scholar

[18]

Furtula, B., Gutman, I.,, *A forgotten topological index* J. Math. Chem. 53 (2015), 1184-1190.CrossrefGoogle Scholar

[19]

Shirdel, G. H, Pour, H. R, Sayadi, A. M., *The hyper-Zagreb index of graph operations* Iran. J. Math. Chem. 4(2) 2013, 213-220.Google Scholar

[20]

Ghorbani, A., Azimi, N.,, *Note on multiple Zagreb indices* Iran. J. Math. Chem. 3 (2), (2012) 137-143.Google Scholar

[21]

Albertson, M., *The irregularity of a graph* Ars. Combin. 46, (1997), 219-225.Google Scholar

[22]

Bell, F., *A note on the irregularity of graphs* Linear Algebra Appl. 161, (1992), 45-54.CrossrefGoogle Scholar

[23]

Milicevic, A., Nikolic, S., Trinajstic, N., *On reformulated Zagreb indices* Mol. Diversity. 8, (2004), 393-399.CrossrefGoogle Scholar

[24]

Doslic, T.,*Vertex-weighted Wiener polynomials for composite graphs* Ars. Math. Contemp. 1, (2008), 66-80.Web of ScienceCrossrefGoogle Scholar

[25]

Gutman, I., Furtula, B., Vukicevic, Z., Popivoda, G.,, (2015) *ON AN Old / New Degree-Based Topological Index* Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.). 2015, 19-31.

[26]

Hao, J., Theorems about Zagreb Indices and Modified Zagreb Indices. Match Commun. Math. Comput. Chem. 2011, 65, 659-670.Google Scholar

[27]

Bruckler, F. M., Doslic, T., Graovac, A., Gutman, I. (2011) *On a class of distance-based molecular structure descriptors* Chem. Phys. Lett. 503, 336-338.CrossrefWeb of ScienceGoogle Scholar

[28]

Deng, H., Yang, J., Xia, F., *A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes* Comp. Math. Appl. (2011) 61, 3017-3023.CrossrefGoogle Scholar

[29]

Huang, Y., Liu, B., Gan, L.,, *Augmented Zagreb Index of Connected Graphs* Match Commun. Math. Comput. Chem. 67 (2012) 483-494Google Scholar

[30]

Kier, L. B., Hall, L. H.,, *Molecular Connectivity in Structure-Activity Analysis* (Wiley, New York, 1986).Google Scholar

[31]

Gutman, I., Furtula, B., Vukicevic, Z., Popivoda, G., *On Zagreb indices and coindices* Match Commun. Math. Comput. Chem, 74(1), 5-1,(2015).Google Scholar

[32]

Bieri, G., Dill, J. D., Heilbronner, E., Schmelzer, A., *Application of the Equivalent Bond Orbital Model to the C2s-Ionization Energies of Saturated Hydrocarbons* Helv. Chim. Acta 1977, 60, 2234-2247.CrossrefGoogle Scholar

[33]

Heilbronner, E., *A Simple Equivalent Bond Orbital Model for the Rationalization of the C2s-Photoelectron Spectra of the Higher n-Alkanes, in Particular of Polyethylene* Helv. Chim. Acta 1977, 60, 2248-2257.CrossrefGoogle Scholar

[34]

Kwun, Y.C., Munir, M., Nazeer, W., Rafique, S., Kang, S.M, *Computational Analysis of topological indices of two Boron Nanotubes* 8, 1, 2018. Google Scholar

[35]

Hussain, Z., Munir, M., Rafique, S. Kang, S. M., *Topological Characterizations and Index-Analysis of New Degree-Based Descriptors of Honeycomb Networks* Symmetry 2018, 10, 478. CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.