Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers


IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 61, Issue 3 (Jun 2007)

Issues

A review of methods for synthesis of nanostructured metals with emphasis on iron compounds

A. Tavakoli / M. Sohrabi / A. Kargari
Published Online: 2007-06-01 | DOI: https://doi.org/10.2478/s11696-007-0014-7

Abstract

Synthesis of metal nanoparticles with specific properties is a newly established research area attracting a great deal of attention. Several methods have been put forward for synthesis of these materials, namely chemical vapor condensation, arc discharge, hydrogen plasma—metal reaction, and laser pyrolysis in the vapor phase, microemulsion, hydrothermal, sol-gel, sonochemical, and microbial processes taking place in the liquid phase, and ball milling carried out in the solid phase.

The properties of metal nanoparticles depend largely on their synthesis procedures. In this paper the fundamentals, advantages, and disadvantages of each synthesis method are discussed.

Keywords: synthesis; metal nanoparticles; iron compounds; biomaterials; magnetite; microemulsions

  • [1] Glenn, J. C., Technol. Forecast. Soc. 73, 128 (2006). CrossrefGoogle Scholar

  • [2] Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A., Chem. Rev. 105, 1025 (2005). CrossrefGoogle Scholar

  • [3] Huang, W. C. and Lue, J. T., J. Phys. Chem. Solids 58, 1529 (1997). CrossrefGoogle Scholar

  • [4] Huang, W. C. and Lue, J. T., Phys. Rev. B: Condens. Matter 59, 69 (1999). CrossrefGoogle Scholar

  • [5] Lue, J. T., Huang, W. C., and Ma, S. K., Phys. Rev. B: Condens. Matter 51, 14570 (1995). CrossrefGoogle Scholar

  • [6] Capek, I., Adv. Colloid Interface Sci. 110, 49 (2004). CrossrefGoogle Scholar

  • [7] Liu, T., Leng, Y. H., and Li, X. G., Solid State Commun. 125, 391 (2003). CrossrefGoogle Scholar

  • [8] Liu, T., Shao, H. Y., and Li, X. G., J. Phys.: Condens. Matter 15, 2507 (2003). CrossrefGoogle Scholar

  • [9] Lane, R., Craig, B., and Babcock, W., AMPTIAC 6, 31 (2002). Google Scholar

  • [10] Nanoscale Materials in Chemistry (Klabunde, K. J., Editor). Chapter 4. Wiley, New York, 2001. Google Scholar

  • [11] Nanoscale Materials (Liz-Marzan, L. M. and Kamat, P. V., Editors), p. 81. Kluwer Academic Publishers, Boston, 2003. Google Scholar

  • [12] Olah, G. A. and Laureate, N., in Handbook of Nanostructured Materials and Nanotechnology (Nalwa, H. S. Editor). Vol. 1, p. 3. Academic Press, San Diego, 2000. Google Scholar

  • [13] Gonsalves, K. E., Li, H., Perez, R., Santiago, P., and Jose-Yacaman, M., Coord. Chem. Rev. 206, 607 (2000). Google Scholar

  • [14] Suslick, K. S. and Price, G. J., Annu. Rev. Mater. Sci. 29, 295 (1999). CrossrefGoogle Scholar

  • [15] Tjong, S. C. and Chen, H., Mater. Sci. Eng., R 45, 1 (2004). CrossrefGoogle Scholar

  • [16] Huber, D. L., Small 1, 482 (2005). CrossrefGoogle Scholar

  • [17] Daniel, M. C. and Astruc, D., Chem. Rev. 104, 293 (2004). CrossrefGoogle Scholar

  • [18] Nano-Powders: Organization of the Disordered/Nanocluster Nucleation, Chapter 1, http://www.eng.uc.edu/:_gbeaucag/Classes/Nanopowders/Chapter_1_html/Chapter_1.html Google Scholar

  • [19] Marvast, M. A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G., Chem. Eng. Technol. 28, 78 (2005). CrossrefGoogle Scholar

  • [20] Marvast, M. A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G., Gasoline Production from Syngas: Fixed Bed FT Reactor Study, CHEMCA 2004, Sydney, 2004. Google Scholar

  • [21] Mahajan, D., Gutlich, P., Ensling, J., Pandya, K., Stumm, U., and Vijayaraghavan, P., Energy Fuels 17, 1210 (2003). CrossrefGoogle Scholar

  • [22] Mahajan, D., Gutlich, P., and Stumm, U., Catal. Commun. 4, 101 (2003). CrossrefGoogle Scholar

  • [23] Lopez-Perez, J. A., Lopez-Quintela, M. A., Mira, J., Rivas, J., and Charles, S. W., J. Phys. Chem. B 101, 8045 (1997). CrossrefGoogle Scholar

  • [24] Tavakoli, A., Sohrabi, M., and Kargari, A., Preparation of Iron Nanoparticles and Study on their Catalytic Properties in Fischer—Tropsch Process, Report No. 61/160. Amirkabir University of Technology, Tehran, 2005. Google Scholar

  • [25] Champion, Y., Guerin-Mailly, S., Bonnentien, J. L., and Langlois, P., Scr. Mater. 44, 1609 (2001). Google Scholar

  • [26] Sanders, P. G., Eastman, J. A., and Weertman, J. R., Acta Mater. 45, 4019 (1997). CrossrefGoogle Scholar

  • [27] Chang, W., Skandan, G., Danforth, S. C., Kear, B. H., and Hahn, H., Nanostruct. Mater. 4, 507 (1994). CrossrefGoogle Scholar

  • [28] Li, D., Choi, C. J., Yu, J. H., Kim, B. K., and Zhang, Z. D., J. Magn. Magn. Mater. 283, 8 (2004). Google Scholar

  • [29] Wang, Z. H., Choi, C. J., Kim, B. K., Kim, J. C., and Zhang, Z. D., J. Alloys Compd. 351, 319 (2003). Google Scholar

  • [30] Chang, W., Skandan, G., Hahn, H., Danforth, S. C., and Kear, B. H., Nanostruct. Mater. 4, 345 (1994). CrossrefGoogle Scholar

  • [31] Choi, C. J., Tolochko, O., and Kim, B. K., Mater. Lett. 56, 289 (2002). CrossrefGoogle Scholar

  • [32] Choi, C. J., Dong, X. L., and Kim, B. K., Scr. Mater. 44, 2225 (2001). Google Scholar

  • [33] Wang, Z. H., Choi, C. J., Kim, B. K., Kim, J. C., and Zhang, Z. D., Carbon 41, 1751 (2003). CrossrefGoogle Scholar

  • [34] Li, D., Choi, C. J., Kim, B. K., and Zhang, Z. D., J. Magn. Magn. Mater. 277, 64 (2004). Google Scholar

  • [35] Wang, Z. H., Choi, C. J., Kim, J. C., Kim, B. K., and Zhang, Z. D., Mater. Lett. 57, 3560 (2003). CrossrefGoogle Scholar

  • [36] Choi, C. J., Kim, B. K., Tolochko, O., and Da, L., Rev. Adv. Mater. Sci. 5, 487 (2003). Google Scholar

  • [37] Dong, X. L., Choi, C. J., and Kim, B. K., Scr. Mater. 47, 857 (2002). Google Scholar

  • [38] Kim, T. S., Sun, W., Choi, C. J., and Lee, B. T., Rev. Adv. Mater. Sci. 5, 481 (2003). Google Scholar

  • [39] Fung, K. K., Qin, B., and Zhang, X. X., Mater. Sci. Eng., A 286, 135 (2000). CrossrefGoogle Scholar

  • [40] Lee, D. W., Yu, J. H., Jang, T. S., and Kim, B. K., Mater. Lett. 59, 2124 (2005). http://dx.doi.org/10.1016/j.matlet.2005.02.045CrossrefGoogle Scholar

  • [41] Oh, S. J., Choi, C. J., Kwon, S. J., Jin, S. H., Kim, B. K., and Park, J. S., J. Magn. Magn. Mater. 280, 147 (2004). CrossrefGoogle Scholar

  • [42] Wang, Z. H., Zhang, Z. D., Choi, C. J., and Kim, B. K., J. Alloys Compd. 361, 289 (2003). Google Scholar

  • [43] Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B., Hwang, J. H., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature 374, 602 (1995). CrossrefGoogle Scholar

  • [44] Harris, P. J. F. and Tsang, S. C., Carbon 36, 1859 (1998). CrossrefGoogle Scholar

  • [45] Wu, W. Z., Zhu, Z. P., Liu, Z. Y., Xie, Y. I., Zhang, J., and Hu, T. D., Carbon 41, 317 (2003). CrossrefGoogle Scholar

  • [46] Chen, C. P., Chang, T. H., and Wang T. F., Ceram. Int. 28, 925 (2002). Google Scholar

  • [47] Ajayan, P. M., Chem. Rev. 99, 1787 (1999). CrossrefGoogle Scholar

  • [48] Wang, Y. H., Chiu, S. C., Lin, K. M., and Li, Y. Y., Carbon 42, 2535 (2004). CrossrefGoogle Scholar

  • [49] Kajiura, H., Huang, H. J., Tsutsui, S., Murakami, Y., and Miyakoshi, M., Carbon 40, 2423 (2002). CrossrefGoogle Scholar

  • [50] Osvath, Z., Koos, A. A., Horvath, Z. E., Gyulai, J., Benito, A. M., Martinez, M. T., Maser, W., and Biro, L. P., Mater. Sci. Eng., C 23, 561 (2003). CrossrefGoogle Scholar

  • [51] Sano, N., Wang, H. L., Chhowalla, M., Alexandrou, I., Amaratunga, G. A. J., Naito, M., and Kanki, T., Chem. Phys. Lett. 368, 331 (2003). CrossrefGoogle Scholar

  • [52] Ohno, S. and Uda, M., Trans. Jpn. Inst. Met. 48, 640 (1984). Google Scholar

  • [53] Liu, T., Shao, H. Y., and Li, X. G., Nanotechnology 14, L1 (2003). Google Scholar

  • [54] Shao, H. Y., Wang, Y. T., Xu, H. R., and Li, X. G., Mater. Sci. Eng., B 110, 221 (2004). Google Scholar

  • [55] Grimes, C. A., Qian, D., Dickey, E. C., Allen, J. L., and Eklund, P. C., J. Appl. Phys. 87, 5642 (2000). CrossrefGoogle Scholar

  • [56] David, B., Pizurova, N., Schneeweiss, O., Bezdicka, P., Morjan, I., and Alexandrescu, R., J. Alloys Compd. 378, 112 (2004). Google Scholar

  • [57] Dumitrache, F., Morjan, I., Alexandrescu, R., Ciupina, V., Prodan, G., Voicu, I., Fleaca, C., Albu, L., Savoiu, M., Sandu, I., Popovici, E., and Soare, I., Appl. Surf. Sci. 247, 25 (2005). Google Scholar

  • [58] Martelli, S., Mancini, A., Giorgi, R., Alexandrescu, R., Cojocaru, S., Crunteanu, A., Voicu, I., Balu, M., and Morjan, I., Appl. Surf. Sci. 154, 353 (2000). Google Scholar

  • [59] Veintemillas-Verdaguer, S., Bomati-Miguel, O., and Morales, M. P., Scr. Mater. 47, 589 (2002). Google Scholar

  • [60] Paul, B. K. and Moulik, S. P., J. Dispersion Sci. Technol. 18, 301 (1997). CrossrefGoogle Scholar

  • [61] Gutmann, H. and Kertes, A. S., J. Colloid Interface Sci. 51, 406 (1973). Google Scholar

  • [62] Liu, J., Kim, A. Y., Wang, L. Q., Palmer, B. J., Chen, Y. L., Bruinsma, P., Bunker, B. C., Exarhos, G. J., Graff, G. L., Rieke, P. C., Fryxell, G. E., Virden, J. W., Tarasevich, B. J., and Chick, L. A., Adv. Colloid Interface Sci. 69, 131 (1996). CrossrefGoogle Scholar

  • [63] Wang, C. Y., Jiqng, W. Q., Zhou, Y., Wang, Y. N., and Chen, Z. Y., Mater. Res. Bull. 35, 53 (2000). CrossrefGoogle Scholar

  • [64] Ji, M., Chen, X., Wai, C. M., and Fulton, J. L., J. Am. Chem. Soc. 121, 2631 (1999). CrossrefGoogle Scholar

  • [65] Ohde, H., Hunt, F., and Wai, C. M., Chem. Mater. 13, 4130 (2001). CrossrefGoogle Scholar

  • [66] Li, F., Vipulanandan, C., and Mohanty, K. K., Colloids Surf., A 223, 103 (2003). CrossrefGoogle Scholar

  • [67] Xu, Z. Z., Wang, C. C., Yang, W. L., Deng, Y. H., and Fu, S. K., J. Magn. Magn. Mater. 277, 136 (2004). Google Scholar

  • [68] Deng, Y., Wang, L., Yang, W., Fu, S., and Elaissari, A., J. Magn. Magn. Mater. 257, 69 (2003). Google Scholar

  • [69] Tartaj, P. and Tartaj, J., Chem. Mater. 14, 536 (2002). CrossrefGoogle Scholar

  • [70] Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., and Tan, W. H., Langmuir 17, 2900 (2001). CrossrefGoogle Scholar

  • [71] Yoshimura, M. and Somiya, S., Mater. Chem. Phys. 61, 1 (1999). CrossrefGoogle Scholar

  • [72] Cote, L. J., Teja, A. S., Wilkinson, A. P., and Zhang, Z. J., Fluid Phase Equilib. 210, 307 (2003). Google Scholar

  • [73] Lee, J. S. and Choi, S. C., Mater. Lett. 58, 390 (2004). CrossrefGoogle Scholar

  • [74] Giri, S., Samanta, S., Maji, S., Ganguli, S., and Bhaumik, A., J. Magn. Magn. Mater. 285, 296 (2005). Google Scholar

  • [75] Chen, Z. Z., Shi, E. W., Li, W. J., Zheng, Y. Q., and Zhong, W. Z., Mater. Lett. 55, 281 (2002). CrossrefGoogle Scholar

  • [76] Mishra, D., Anand, S., Panda, R. K., and Das, R. P., Mater. Chem. Phys. 86, 132 (2004). CrossrefGoogle Scholar

  • [77] Ataie, A., Priamoon, M. R., Harris, I. R., and Ponton, C. B., J. Mater. Sci. 30, 5600 (1995). CrossrefGoogle Scholar

  • [78] Zhang, D. S., Yoshida, T., Furuta, K., and Minoura, H., J. Photochem. Photobiol., A 164, 159 (2004). Google Scholar

  • [79] Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 66, 11 (1983). CrossrefGoogle Scholar

  • [80] Dawson, W. J., Am. Ceram. Soc. Bull. 67, 1673 (1988). Google Scholar

  • [81] Pivin, J. C. and Vincent, E., in Physics, Chemistry and Applications of Nanostructures: Reviews and Short Notes to Nanomeeting 2003 Minsk (Borisenko, V. E., Gaponenko, S. V., and Gurin, V. S., Editors), p. 285. World Scientific Publishing, London, 2003. Google Scholar

  • [82] Nagineni, V. S., Zhao, S. H., Potluri, A., Liang, Y., Siriwardane, U., Seetala, N. V., Fang, J., Palmer, J., and Kuila, D., Ind. Eng. Chem. Res. 44, 5602 (2005). CrossrefGoogle Scholar

  • [83] Hseih, C. T., Huang, W. L., and Lue, J. T., J. Phys. Chem. Solids 63, 733 (2002). CrossrefGoogle Scholar

  • [84] Lu, Y., Yin, Y. D., Mayers, B. T., and Xia, Y. N., Nano Lett. 2, 183 (2002). CrossrefGoogle Scholar

  • [85] Santos, A., Ardisson, J. D., Tambourgi, E. B., and Macedo, W. A. A., J. Magn. Magn. Mater. 177, 247 (1998). Google Scholar

  • [86] Ennas, G., Musinu, A., Piccaluga, G., Zedda, D., Gatteschi, D., Sangregorio, C., Stanger, J. L., Concas, G., and Spano, G., Chem. Mater. 10, 495 (1998). CrossrefGoogle Scholar

  • [87] Bruni, S., Cariati, F., Casu, M., Lai, A., Musinu, A., Piccaluga, G., and Solinas, S., Nanostruct. Mater. 11, 573 (1999). CrossrefGoogle Scholar

  • [88] Suslick, K. S., Choe, S. B., Cichowlas, A. A., and Grinstaff, M. W., Nature 353, 414 (1991). Google Scholar

  • [89] Suslick, K. S., Hyeon, T., Fang, M., and Cichowlas, A. A., in Advanced Catalysts and Nanostructured Materials (Moser, W. R., Editor), Chapter 8. Academic Press, New York, 1996. Google Scholar

  • [90] Khalil, H., Mahajan, D., Rafailovich, M., Gelfer, M., and Pandya, K., Langmuir 20, 6896 (2004). CrossrefGoogle Scholar

  • [91] Pol, V. G., Motiei, M., Gedanken, A., Calderon-Moreno, J., and Mastai, Y., Chem. Mater. 15, 1378 (2003). CrossrefGoogle Scholar

  • [92] Vijayakumar, R., Koltypin, Y., Felner, I., and Gedanken, A., Mater. Sci. Eng., A 286, 101 (2000). Google Scholar

  • [93] Gedanken, A., Ultrason. Sonochem. 11, 47 (2004). CrossrefGoogle Scholar

  • [94] Shafi, K. V. P. M., Ulman, A., Yan, X. Z., Yang, N. L., Estournes, C., White, H., and Rafailovich, M., Langmuir 17, 5093 (2001). CrossrefGoogle Scholar

  • [95] Roh, Y., Lauf, R. J., McMillan, A. D., Zhang, C., Rawn, C. J., Bai, J., and Phelps, T. J., Solid State Commun. 118, 529 (2001). CrossrefGoogle Scholar

  • [96] Tsang, S. C., Qiu, J. S., Harris, P. J. F., Fu, Q. J., and Zhang, N., Chem. Phys. Lett. 322, 553 (2000). Google Scholar

  • [97] Janot, R. and Guerard, D., J. Alloys Compd. 333, 302 (2002). Google Scholar

  • [98] Pithawalla, Y. B., El Shall, M. S., and Deevi, S. C., Intermetallics 8, 1225 (2000). CrossrefGoogle Scholar

  • [99] Murty, B. S. and Ranganathan, S., Int. Mater. Rev. 43, 101 (1998). CrossrefGoogle Scholar

  • [100] Chin, P. P., Ding, J., Yi, J. B., and Liu, B. H., J. Alloys Compd. 390, 255 (2005). Google Scholar

  • [101] Wu, J. M., Mater. Lett. 48, 324 (2001). CrossrefGoogle Scholar

  • [102] Rawers, J. and Cook, D., Nanostruct. Mater. 11, 331 (1999). CrossrefGoogle Scholar

  • [103] Joseyphus, R. J., Narayanasamy, A., Nigam, A. K., and Krishnan, R., J. Magn. Magn. Mater. 296, 57 (2006). CrossrefGoogle Scholar

  • [104] Zhan, Z. L., He, Y. D., Wang, D. R., and Gao, W., Intermetallics 14, 75 (2006). CrossrefGoogle Scholar

  • [105] Kalyanaraman, R., Yoo, S., Krupashankara, M. S., Sudarshan, T. S., and Dowding, R. J., Nanostruct. Mater. 10, 1379 (1998). CrossrefGoogle Scholar

  • [106] Yu, J. H., Lee, J. S., and Ahn, K. H., Scr. Mater. 44, 2213 (2001). Google Scholar

  • [107] Kim, J. C. and Kim, B. K., Scr. Mater. 50, 969 (2004). Google Scholar

  • [108] Yu, J. H., Kim, S. Y., Lee, J. S., and Ahn, K. H., Nanostruct. Mater. 12, 199 (1999). CrossrefGoogle Scholar

  • [109] Lester, E., Blood, P., Denyer, J., Giddings, D., Azzopardi., B., and Poliakoff, M., J. Supercrit. Fluids 37, 209 (2006). CrossrefGoogle Scholar

  • [110] Srivastava, D. N., Perkas, N., Gedanken, A., and Felner, I., J. Phys. Chem. B 106, 1878 (2002). CrossrefGoogle Scholar

About the article

Published Online: 2007-06-01

Published in Print: 2007-06-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-007-0014-7.

Export Citation

© 2007 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in