Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Chemical Papers


IMPACT FACTOR 2015: 1.326

SCImago Journal Rank (SJR) 2015: 0.382
Source Normalized Impact per Paper (SNIP) 2015: 0.560
Impact per Publication (IPP) 2015: 1.279

Online
ISSN
1336-9075
See all formats and pricing
In This Section
Volume 62, Issue 1 (Feb 2008)

Issues

Photocatalytic reduction of CO2 over TiO2 based catalysts

Kamila Kočí
  • Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava, Czech Republic
  • Email:
/ Lucie Obalová
  • Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava, Czech Republic
  • Email:
/ Zdeněk Lacný
  • Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava, Czech Republic
  • Email:
Published Online: 2008-02-01 | DOI: https://doi.org/10.2478/s11696-007-0072-x

Abstract

At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure.

Keywords: CO2; photocatalysis; TiO2; reduction

  • [1] Adachi, K., Ohta, K., & Mizuno, M. (1994). Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53, 187–190. DOI:10.1016/0038-092X(94)90480-4. http://dx.doi.org/10.1016/0038-092X(94)90480-4 [Crossref]

  • [2] Anpo, M., Yamashita, H., Ichinashi, Y., & Ehara, S. (1995). Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 396, 21–26. DOI: 10.1016/0022-0728(95)04141-A. http://dx.doi.org/10.1016/0022-0728(95)04141-A [Crossref]

  • [3] Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B, 101, 2632–2636. DOI:10.1021/jp962696h. http://dx.doi.org/10.1021/jp962696h [Crossref]

  • [4] Anpo, M. Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S. G., Ichihashi, Y., G., Park, D. R., Suzuki, Y., Koyano, K., & Tatsumi, T. (1998). Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 44, 327–332. DOI: 10.1016/S0920-5861(98)00206-5. http://dx.doi.org/10.1016/S0920-5861(98)00206-5 [Crossref]

  • [5] Bhatkhande, D. S., Pangarkar, V. G., & Beenackers, A. A. C. M. (2001). Photocatalytic degradation for environmental applications — a review. Journal of Chemical Technology and Biotechnology, 77, 102–116. DOI: 10.1002/jctb.532. http://dx.doi.org/10.1002/jctb.532 [Web of Science] [Crossref]

  • [6] Bouras, P., Stathatos, E., & Lianos, P. (2007). Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis. B: Environmental, 73, 51–59. DOI:10.1016/j.apcatb.2006.06.007. http://dx.doi.org/10.1016/j.apcatb.2006.06.007 [Web of Science] [Crossref]

  • [7] Dijkstra, J. W., & Jansen, D. (2004). Novel concepts for CO2 capture. Energy, 29, 1249–1257. DOI: 10.1016/j.energy.2004.03.084. http://dx.doi.org/10.1016/j.energy.2004.03.084 [Crossref]

  • [8] Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357, DOI:10.1021/cr00017a016. http://dx.doi.org/10.1021/cr00017a016 [Crossref]

  • [9] Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., & Yanagida, S. (1997). Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 101, 8270–8278. DOI:10.1021/jp971621q. http://dx.doi.org/10.1021/jp971621q [Crossref]

  • [10] Gokon, N., Hasegawa, N., Kaneko, H., Aoki, H., Tamaura, Y., & Kitamura, M. (2003). Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Solar Energy Materials and Solar Cells, 80. 335–341, DOI: 10.1016/j.solmat.2003.08.016. http://dx.doi.org/10.1016/j.solmat.2003.08.016 [Crossref]

  • [11] Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a0 [Crossref]

  • [12] Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277, 637–638. DOI: 10.1038/277637a0. http://dx.doi.org/10.1038/277637a0 [Crossref]

  • [13] Intergovernmental Panel on Climate Change (2005). Special report on carbon dioxide capture and storage. IPCC report. Retrieved January 10, 2007, from http://www.mnp.nl/ipcc/pages_media/SRCCS-final/ccsspm.pdf.

  • [14] Kaneco, S., Kurimoto, H., Ohta, K., Mizuno, T., & Saji, A. (1997). Photocatalytic reduction of CO2 using TiO2 powders in liquid medium. Journal of Photochemistry and Photobiology A: Chemistry, 109, 59–63. DOI: 10.1016/S1010-6030(97)00107-X. http://dx.doi.org/10.1016/S1010-6030(97)00107-X [Crossref]

  • [15] Kaneco, S., Shimizu, Y., Ohta, K., & Mizuno, T. (1998). Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 115, 223–226. DOI: 10.1016/S1010-6030(98)00274-3. http://dx.doi.org/10.1016/S1010-6030(98)00274-3 [Crossref]

  • [16] Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., & Mizuno, T. (1999). Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy, 24, 21–30. DOI:10.1016/S0360-5442(98)00070-X. http://dx.doi.org/10.1016/S0360-5442(98)00070-X [Crossref]

  • [17] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (1997). Photoreduction of carbon dioxide with hydrogen over ZrO2. Chemical Communications, 1997, 841–844. DOI: 10.1039/a700185a. http://dx.doi.org/10.1039/a700185a [Crossref]

  • [18] Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., & Yoshida, S. (1999). Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126, 117–124. DOI: 10.1016/S1010-6030(99)00113-6. http://dx.doi.org/10.1016/S1010-6030(99)00113-6 [Crossref]

  • [19] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000a). Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Physical Chemistry Chemical Physics, 2, 2635–2639. DOI: 10.1039/b001642j. http://dx.doi.org/10.1039/b001642j [Crossref]

  • [20] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000b). Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2, 5302–5307. DOI: 10.1039/b005315p. http://dx.doi.org/10.1039/b005315p [Crossref]

  • [21] Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., & Yoshida, S. (2001). Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 3, 1108–1113. DOI: 10.1039/b008887k. http://dx.doi.org/10.1039/b008887k [Crossref]

  • [22] Kosugi, T., Hayashi, A., Matsumoto, T., Akimoto, K., Tokimatsu, K., Yoshida, H., Tomoda, T., & Kaya, Y. (2004). Time to realization: Evaluation of CO2 capture technology R&Ds by GERT (Graphical Evaluation and Review Technique) analyses. Energy, 29, 1297–1308. DOI:10.1016/j.energy.2004.03.088. http://dx.doi.org/10.1016/j.energy.2004.03.088 [Crossref]

  • [23] Lin, W. Y., Han, H. X., & Frei, H. (2004). CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. Journal of Physical Chemistry B, 108, 18269–18273. DOI: 10.1021/jp040345u. http://dx.doi.org/10.1021/jp040345u [Crossref]

  • [24] Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758. DOI:10.1021/cr00035a013. http://dx.doi.org/10.1021/cr00035a013 [Crossref]

  • [25] Liu, B.-J., Torimoto, T., Matsumoto, H., & Yoneyama, H. (1997). Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 108, 187–192. DOI: 10.1016/S1010-6030(97)00082-8. http://dx.doi.org/10.1016/S1010-6030(97)00082-8 [Crossref]

  • [26] Liu, B.-J., Torimoto, T., & Yoneyama, H. (1998). Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 115, 227–230. DOI: 10.1016/S1010-6030(98)00272-X. http://dx.doi.org/10.1016/S1010-6030(98)00272-X [Crossref]

  • [27] Matthews, R. W., & McEvoy, S. R. (1992). A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors. Journal of Photochemistry and Photobiology A: Chemistry, 66, 355–366. DOI: 10.1016/1010-6030(92)80008-J. http://dx.doi.org/10.1016/1010-6030(92)80008-J [Crossref]

  • [28] Meisen, A., & Shuai, X. (1997). Research and development issues in CO2 capture. Energy Conversion and Management, 38, S37–S42. DOI: 10.1016/S0196-8904(96)00242-7. http://dx.doi.org/10.1016/S0196-8904(96)00242-7 [Crossref]

  • [29] Metz, B., Davidson, O., Swart, R., & Pan, J. (2001). Climate change 2001: mitigation. Contribution of working groups III to the third assessment report of the Intergovernmental Panel on Climate Change. Retrieved January 10, 2007, from http://www.grida.no/climate/ipcc tar/wg3/index.htm.

  • [30] Mizuno, T., Adachi, K., Ohta, K., & Saji, A. (1996). Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 98, 87–90. DOI: 10.1016/1010-6030(96)04334-1. http://dx.doi.org/10.1016/1010-6030(96)04334-1 [Crossref]

  • [31] Pan, P.-W., & Chen, Y.-W. (2007). Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 8, 1546–1549. DOI:10.1016/j.catcom.2007.01.006. http://dx.doi.org/10.1016/j.catcom.2007.01.006 [Crossref] [Web of Science]

  • [32] Riemer, P. (1996). Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme. Energy Conversion and Management, 37, 665–670. DOI: 10.1016/0196-8904(95)00237-5. http://dx.doi.org/10.1016/0196-8904(95)00237-5 [Crossref]

  • [33] Sasirekha, N., Basha, S. J. S., & Shanthi, K. (2006). Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 62, 169–180. DOI: 10.1016/j.apcatb.2005.07.009. http://dx.doi.org/10.1016/j.apcatb.2005.07.009 [Crossref]

  • [34] Sayama, K., & Arakawa, H. (1993). Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over zirconia catalyst. Journal of Physical Chemistry, 97, 531–533. DOI: 10.1021/j100105a001. http://dx.doi.org/10.1021/j100105a001 [Crossref]

  • [35] Subrahmanyam, M., Kaneco, S., & Alonso-Vante, N. (1999). A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental, 23, 169–174. DOI: 10.1016/S0926-3373(99)00079-X. http://dx.doi.org/10.1016/S0926-3373(99)00079-X [Crossref]

  • [36] Tan, S. S., Zou, L., & Hu, E. (2006). Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115, 269–273. DOI:10.1016/j.cattod.2006.02.057. http://dx.doi.org/10.1016/j.cattod.2006.02.057 [Crossref]

  • [37] Tan, S. S., Zou, L., & Hu, E. (2007). Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials, 8, 89–92. DOI: 10.1016/j.stam.2006.11.004. http://dx.doi.org/10.1016/j.stam.2006.11.004 [Web of Science] [Crossref]

  • [38] Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y., & Funabiki, T. (2004). Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. Journal Physical Chemistry B, 108, 346–354. DOI: 10.1021/jp0362943. http://dx.doi.org/10.1021/jp0362943 [Crossref]

  • [39] Tseng, I.-H., Chang, W.-C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37, 37–48. DOI: 10.1016/S0926-3373(01)00322-8. http://dx.doi.org/10.1016/S0926-3373(01)00322-8 [Crossref]

  • [40] Tseng, I.-H., Wu, J. C. S., & Chou H.-Y. (2004). Effects of solgel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis, 221, 432–440. DOI:10.1016/j.jcat.2003.09.002. http://dx.doi.org/10.1016/j.jcat.2003.09.002 [Crossref]

  • [41] Ulagappan, N., & Frei, H. (2000). Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. Journal of Physical Chemistry A, 104, 7834–7839. DOI: 10.1021/jp001470i. http://dx.doi.org/10.1021/jp001470i [Crossref]

  • [42] Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research, 45, 2558–2568. DOI:10.1021/ie0505763. http://dx.doi.org/10.1021/ie0505763 [Crossref]

  • [43] Wu, J. C. S., Lin, H.-M., & Lai, C.-L. (2005). Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General, 296, 194–200. DOI:10.1016/j.apcata.2005.08.021. http://dx.doi.org/10.1016/j.apcata.2005.08.021 [Crossref]

  • [44] Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45, 717–721. DOI:10.1016/j.carbon.2006.11.028. http://dx.doi.org/10.1016/j.carbon.2006.11.028 [Crossref] [Web of Science]

  • [45] Yamashita, H., Shiga, A., Kawasaki, S., Ichihashi, Y., Ehara, S., & Anpo, M. (1995). Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts. Energy Conversion, 36, 617–620. DOI:10.1016/0196-8904(95)00081-N. http://dx.doi.org/10.1016/0196-8904(95)00081-N [Crossref]

  • [46] Yamashita, H., Fujii, Y., Ichinashi, Y., Zhang, S. G., Ikeue, K., Park, D. R., Koyano, K., Tatsumi, T., & Anpo, M. (1998). Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45, 221–227. DOI: 10.1016/S0920-5861(98)00219-3. http://dx.doi.org/10.1016/S0920-5861(98)00219-3 [Crossref]

  • [47] Yu, Y., Yu, J. C., Yu, J.-G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Ding, L., Ge, W.-K., & Wong, P.-K. (2005). Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 289, 186–196. DOI: 10.1016/j.apcata.2005.04.057. http://dx.doi.org/10.1016/j.apcata.2005.04.057 [Crossref]

About the article

Published Online: 2008-02-01

Published in Print: 2008-02-01



Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-007-0072-x. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hao Huang, Xingce Fan, Qi Hao, Deyang Du, Xiaoguang Luo, and Teng Qiu
RSC Adv., 2016, Volume 6, Number 15, Page 12611
[2]
P.N. Paulino, V.M.M. Salim, and N.S. Resende
Applied Catalysis B: Environmental, 2015
[3]
Yanfang Li, Wenpei Zhang, Xing Shen, Pengfei Peng, Liangbin Xiong, and Ying Yu
Chinese Journal of Catalysis, 2015, Volume 36, Number 12, Page 2229
[4]
Erlisa Baraj, Stanislav Vagaský, Tomáš Hlinčík, Karel Ciahotný, and Viktor Tekáč
Chemical Papers, 2015, Volume 0, Number 0
[5]
Hung-Yu Wu, Nhat Huy Nguyen, Hsunling Bai, Sue-min Chang, and Jeffrey C. S. Wu
RSC Adv., 2015, Volume 5, Number 78, Page 63142
[6]
Zhuo Xiong, Haibing Wang, Nuoyan Xu, Hailong Li, Baizeng Fang, Yongchun Zhao, Junying Zhang, and Chuguang Zheng
International Journal of Hydrogen Energy, 2015
[7]
Oluwafunmilola Ola and M. Mercedes Maroto-Valer
Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015
[8]
Enzhou Liu, Lulu Qi, Juanjuan Bian, Yihan Chen, Xiaoyun Hu, Jun Fan, Hanchen Liu, Changjun Zhu, and Qiuping Wang
Materials Research Bulletin, 2015, Volume 68, Page 203
[9]
Lan Yuan and Yi-Jun Xu
Applied Surface Science, 2015, Volume 342, Page 154
[10]
Kewei Xu, Timothy M. Korter, and Mark S. Braiman
The Journal of Physical Chemistry A, 2015, Volume 119, Number 14, Page 3348
[11]
Van Nhu Nguyen and Ludger Blum
Chemie Ingenieur Technik, 2015, Volume 87, Number 4, Page 354
[12]
Khozema Ahmed Ali, Ahmad Zuhairi Abdullah, and Abdul Rahman Mohamed
Renewable and Sustainable Energy Reviews, 2015, Volume 44, Page 508
[13]
F. T. Ozkan, R. Quesada-Cabrera, and I. P. Parkin
RSC Adv., 2015, Volume 5, Number 9, Page 6970
[14]
A.P. Prakasham and Prasenjit Ghosh
Inorganica Chimica Acta, 2015, Volume 431, Page 61
[15]
Indrajit Shown, Hsin-Cheng Hsu, Yu-Chung Chang, Chang-Hui Lin, Pradip Kumar Roy, Abhijit Ganguly, Chen-Hao Wang, Jan-Kai Chang, Chih-I Wu, Li-Chyong Chen, and Kuei-Hsien Chen
Nano Letters, 2014, Volume 14, Number 11, Page 6097
[16]
Rasel Das, Sharifah Bee Abd Hamid, Md. Eaqub Ali, Ahmad Fauzi Ismail, M.S.M. Annuar, and Seeram Ramakrishna
Desalination, 2014, Volume 354, Page 160
[17]
Tomoaki Takayama, Kentaro Tanabe, Kenji Saito, Akihide Iwase, and Akihiko Kudo
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 44, Page 24417
[18]
Oman Zuas and Harry Budiman
Nano-Micro Letters, 2013, Volume 5, Number 1, Page 26
[19]
Anna Cybula, Marek Klein, and Adriana Zaleska
Applied Catalysis B: Environmental, 2015, Volume 164, Page 433
[20]
Sreejon Das and W.M.A. Wan Daud
Renewable and Sustainable Energy Reviews, 2014, Volume 39, Page 765
[22]
Wenguang Tu, Yong Zhou, and Zhigang Zou
Advanced Materials, 2014, Volume 26, Number 27, Page 4607
[23]
Sreejon Das and W. M. A. Wan Daud
RSC Advances, 2014, Volume 4, Number 40, Page 20856
[24]
F. Gonzalez-Posada, R. Sellappan, B. Vanpoucke, and D. Chakarov
RSC Advances, 2014, Volume 4, Number 40, Page 20659
[25]
Li Qiu-ye, Zong Lan-lan, Li Chen, Cao Yu-hui, Wang Xiao-dong, and Yang Jian-jun
Advances in Condensed Matter Physics, 2014, Volume 2014, Page 1
[26]
Dan C. Sorescu, Svatopluk Civiš, and Kenneth D. Jordan
The Journal of Physical Chemistry C, 2014, Volume 118, Number 3, Page 1628
[27]
Beata Michalkiewicz, Justyna Majewska, Grzegorz Kądziołka, Kamila Bubacz, Sylwia Mozia, and Antoni W. Morawski
Journal of CO2 Utilization, 2014, Volume 5, Page 47
[28]
Marta Manzanares, Cristian Fàbrega, J. Oriol Ossó, Lourdes F. Vega, Teresa Andreu, and Joan Ramón Morante
Applied Catalysis B: Environmental, 2014, Volume 150-151, Page 57
[29]
Yizhuo He, Pradip Basnet, Simona E. Hunyadi Murph, and Yiping Zhao
ACS Applied Materials & Interfaces, 2013, Volume 5, Number 22, Page 11818
[30]
Oluwafunmilola Ola, M. Mercedes Maroto-Valer, and Sarah Mackintosh
Energy Procedia, 2013, Volume 37, Page 6704
[31]
Yucheng Lan, Yalin Lu, and Zhifeng Ren
Nano Energy, 2013, Volume 2, Number 5, Page 1031
[32]
Sze-Mun Lam, Jin-Chung Sin, Ahmad Abdullah, and Abdul Mohamed
Chemical Papers, 2013, Volume 67, Number 10
[33]
Robert Taylor, Sylvain Coulombe, Todd Otanicar, Patrick Phelan, Andrey Gunawan, Wei Lv, Gary Rosengarten, Ravi Prasher, and Himanshu Tyagi
Journal of Applied Physics, 2013, Volume 113, Number 1, Page 011301
[34]
M. Torabi Merajin, S. Sharifnia, S.N. Hosseini, and N. Yazdanpour
Journal of the Taiwan Institute of Chemical Engineers, 2013, Volume 44, Number 2, Page 239
[35]
Renaud Kiesgen de_Richter, Tingzhen Ming, and Sylvain Caillol
Renewable and Sustainable Energy Reviews, 2013, Volume 19, Page 82
[36]
V. Jeyalakshmi, K. Rajalakshmi, R. Mahalakshmy, K. R. Krishnamurthy, and B. Viswanathan
Research on Chemical Intermediates, 2013, Volume 39, Number 6, Page 2565
[37]
Dan C. Sorescu, Junseok Lee, Wissam A. Al-Saidi, and Kenneth D. Jordan
The Journal of Chemical Physics, 2012, Volume 137, Number 7, Page 074704
[38]
Monique M. Rodriguez, Xihong Peng, Lianjun Liu, Ying Li, and Jean M. Andino
The Journal of Physical Chemistry C, 2012, Volume 116, Number 37, Page 19755
[39]
Y Y Maruo, T Yamada, and M Tsuda
Journal of Physics: Conference Series, 2012, Volume 379, Page 012036
[40]
Guohua Liu, Nils Hoivik, Kaiying Wang, and Henrik Jakobsen
Solar Energy Materials and Solar Cells, 2012, Volume 105, Page 53
[41]
Thomas W. Woolerton, Sally Sheard, Yatendra S. Chaudhary, and Fraser A. Armstrong
Energy & Environmental Science, 2012, Volume 5, Number 6, Page 7470
[42]
Petr Kluson, Stepan Kment, Magdalena Morozova, Pavel Dytrych, Stanislav Hejda, Morwenna Slater, Zdenek Hubicka, and Josef Krysa
Chemical Papers, 2012, Volume 66, Number 5
[43]
Qianyi Zhang, Tingting Gao, Jean M. Andino, and Ying Li
Applied Catalysis B: Environmental, 2012, Volume 123-124, Page 257
[44]
Anna Kubacka, Marcos Fernández-García, and Gerardo Colón
Chemical Reviews, 2012, Volume 112, Number 3, Page 1555
[45]
Xin Li, Haoliang Liu, Deliang Luo, Jingtian Li, Ying Huang, Huiling Li, Yueping Fang, Yuehua Xu, and Li Zhu
Chemical Engineering Journal, 2012, Volume 180, Page 151
[46]
Yong-Jun Yuan, Zhen-Tao Yu, Xiao-Yu Chen, Ji-Yuan Zhang, and Zhi-Gang Zou
Chemistry - A European Journal, 2011, Volume 17, Number 46, Page 12891
[47]
Mirza Cokoja, Christian Bruckmeier, Bernhard Rieger, Wolfgang A. Herrmann, and Fritz E. Kühn
Angewandte Chemie, 2011, Volume 123, Number 37, Page 8662
[48]
Sylwia Mozia, Aleksandra Heciak, and Antoni W. Morawski
Journal of Photochemistry and Photobiology A: Chemistry, 2010, Volume 216, Number 2-3, Page 275
[49]
Tatsuto Yui, Akira Kan, Chieko Saitoh, Kazuhide Koike, Takashi Ibusuki, and Osamu Ishitani
ACS Applied Materials & Interfaces, 2011, Volume 3, Number 7, Page 2594
[50]
Renaud de_Richter and Sylvain Caillol
Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, Volume 12, Number 1, Page 1
[51]
Sylwia Mozia, Aleksandra Heciak, and Antoni W. Morawski
Catalysis Today, 2011, Volume 161, Number 1, Page 189
[52]
Michael A. Henderson
Surface Science Reports, 2011, Volume 66, Number 6-7, Page 185
[53]
Qianyi Zhang, Ying Li, Erik A. Ackerman, Marija Gajdardziska-Josifovska, and Hailong Li
Applied Catalysis A: General, 2011, Volume 400, Number 1-2, Page 195
[54]
Chieh-Chao Yang, Yi-Hui Yu, Bart van der Linden, Jeffrey C. S. Wu, and Guido Mul
Journal of the American Chemical Society, 2010, Volume 132, Number 24, Page 8398
[55]
Christopher Graves, Sune D. Ebbesen, Mogens Mogensen, and Klaus S. Lackner
Renewable and Sustainable Energy Reviews, 2011, Volume 15, Number 1, Page 1
[56]
Michael R. Hoffmann, John A. Moss, and Marc M. Baum
Dalton Transactions, 2011, Volume 40, Number 19, Page 5151
[57]
Sylwia Mozia, Aleksandra Heciak, and Antoni W. Morawski
Applied Catalysis B: Environmental, 2011, Volume 104, Number 1-2, Page 21
[59]
Raina Wanbayor, Peter Deák, Thomas Frauenheim, and Vithaya Ruangpornvisuti
The Journal of Chemical Physics, 2011, Volume 134, Number 10, Page 104701
[60]
Jun Fan, En-zhou Liu, Lei Tian, Xiao-yun Hu, Qi He, and Tao Sun
Journal of Environmental Engineering, 2011, Volume 137, Number 3, Page 171
[61]
Ekram Hossain, David W. Rothgeb, and Caroline Chick Jarrold
The Journal of Chemical Physics, 2010, Volume 133, Number 2, Page 024305

Comments (0)

Please log in or register to comment.
Log in