Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 62, Issue 3

Issues

Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1

Waldemar Rymowicz
  • Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 503 75, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anita Rywińska
  • Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 503 75, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Witold Gładkowski
  • Department of Chemistry, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, 503 75, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-05-02 | DOI: https://doi.org/10.2478/s11696-008-0018-y

Abstract

This study shows a possible microbial process for utilization of crude glycerol generated by the biodiesel industry for citric acid and erythritol production. Simultaneous production of citric acid and erythritol under nitrogen-limited conditions with glycerol as the carbon source was achieved with an acetate negative mutant of Y. lipolytica Wratislavia K1 in fed-batch cultivations. The effect of the initial glycerol concentration (from 30–180 g dm−3) on the citrate and erythritol production was investigated. As a result of the experiments, maximum citric acid production (110 g dm−3) and a very high amount of erythritol (81 g dm−3) were determined after 168 h of fed-batch cultivation with the initial glycerol concentration of 150 g dm−3 and the total glycerol concentration of 250 g dm−3. In addition, the citric acid to isocitric acid ratio of the products from this strain was 35.5:1.

Keywords: crude glycerol; citric acid; erythritol; Yarrowia lipolytica; fed-batch mode

  • [1] Anastassiadis, S., Aivasidis, A., & Wandrey, C. (2002). Citric acid production by Candida strains under intracellular nitrogen limitation. Applied Microbiology and Biotechnology, 60, 81–87. DOI: 10.1007/s00253-002-1098-1. http://dx.doi.org/10.1007/s00253-002-1098-1CrossrefGoogle Scholar

  • [2] Brown, B. D., Hsu, K. H., Hammond, E. G., & Glatz, B. A. (1989). A relationship between growth and lipid accumulation in Candida curvata D. Journal of Fermentation and Bioengineering, 68, 344–352. DOI: 10.1016/0922-338X(89)90010-X. http://dx.doi.org/10.1016/0922-338X(89)90010-XCrossrefGoogle Scholar

  • [3] Barbirato, F., Chedaille, D., & Bories, A. (1997). Propionic acid fermentation from glycerol: comparison with conventional substrates. Applied Microbiology and Biotechnology, 47, 441–446. DOI: 10.1007/s002530050953. http://dx.doi.org/10.1007/s002530050953CrossrefGoogle Scholar

  • [4] Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. Journal of Biotechnology, 110, 73–84. DOI: 10.1016/j.jbiotec.2004.01.007. http://dx.doi.org/10.1016/j.jbiotec.2004.01.007CrossrefGoogle Scholar

  • [5] Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Applied Biochemistry and Microbiology, 41, 418–425. DOI: 10.1007/s10438-005-0076-7. http://dx.doi.org/10.1007/s10438-005-0076-7CrossrefGoogle Scholar

  • [6] Goldberg, D. M., & Ellis, G. (1983). Methods of Enzymatic Analysis. Weinheim: Verlag Chemie. Google Scholar

  • [7] Himmi, E. H., Boris, A., & Barbinato, F. (1999). Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresource Technology, 67, 123–128. DOI: 10.1016/S0960-8524(98)00109-6. http://dx.doi.org/10.1016/S0960-8524(98)00109-6CrossrefGoogle Scholar

  • [8] Imandi, S. B., Bandaru, V. V. R., Somalanka, S. R., & Garapati, H. R. (2007). Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme and Microbial Technology, 40, 1367–1372. DOI: 10.1016/j.enzmictec.2006.10.012. http://dx.doi.org/10.1016/j.enzmictec.2006.10.012CrossrefWeb of ScienceGoogle Scholar

  • [9] Ishizuka, H., Wako, K., Kasumi, T., & Sasaki, T. (1989). Breeding of a mutant of Aureobasidium sp. with high erythritol production. Journal of Fermentation and Bioengineering, 68, 310–314. DOI: 10.1016/0922-338X(89)90003-2. http://dx.doi.org/10.1016/0922-338X(89)90003-2CrossrefGoogle Scholar

  • [10] Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100, 260–265. DOI: 10.1263/jbb.100.260. http://dx.doi.org/10.1263/jbb.100.260CrossrefGoogle Scholar

  • [11] Kim, J. W., Park, T. J., Ryu, D. D. Y., & Kim, J. Y. (2000). High cell density culture of Yarrowia lipolytica using a one-step feeding process. Biotechnology Progress, 16, 657–660. DOI: 10.1021/bp000037n. http://dx.doi.org/10.1021/bp000037nCrossrefGoogle Scholar

  • [12] Koh, E. S., Lee, T. H., Lee, D. Y., Kim, H. J., Ryu, Y. W., & Seo, J. H. (2003). Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnology Letters, 25, 2103–2105. DOI: 10.1023/B:BILE.0000007076.64338.ce. http://dx.doi.org/10.1023/B:BILE.0000007076.64338.ceCrossrefGoogle Scholar

  • [13] Meesters, P. A. E. P., Huijberts, G. N. M., & Eggink, G. (1996). High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Applied Microbiology and Biotechnology, 45, 575–579. DOI: 10.1007/s002530050731. http://dx.doi.org/10.1007/s002530050731CrossrefGoogle Scholar

  • [14] Lee, K. H., Seo, J. H., & Ryu, Y. W. (2002). Fermentation characteristics of salt-tolerant mutant, Candida magnoliae M26, for the production of erythritol. Korean Journal of Biotechnology and Bioengineering, 17, 509–514. Google Scholar

  • [15] Lee, P. C., Lee, W. G., Lee, S. Y., & Chang, H. N. (2001). Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succinici producens using glycerol as a carbon source. Biotechnology and Bioengineering, 72, 41–48. DOI: 10.1002/1097-0290(20010105)72:1〈41::AID-BIT6〉3.0.CO;2-N. http://dx.doi.org/10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-NCrossrefGoogle Scholar

  • [16] Levinson, W. E., Kurtzman, C. P., & Kuo, T. M. (2007). Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microbiology and Technology, 41, 292–295. DOI: 10.1016/j.enzmictec.2007.02.005. http://dx.doi.org/10.1016/j.enzmictec.2007.02.005Web of ScienceCrossrefGoogle Scholar

  • [17] Oh, D. K., Cho, C. H., Lee, J. K., & Kim, S. Y. (2001). Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration. Journal of Industrial Microbiology and Biotechnology, 26, 248–252. DOI: 10.1038/sj.jim.7000122. http://dx.doi.org/10.1038/sj.jim.7000122CrossrefGoogle Scholar

  • [18] Papanikolaou, S., & Aggelis, G. (2003). Modelling aspects of the biotechnological valorization of raw glycerol: Production of citric acid by Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 78, 542–547. DOI: 10.1002/jctb.831. http://dx.doi.org/10.1002/jctb.831CrossrefGoogle Scholar

  • [19] Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 92, 737–744. DOI: 10.1046/j.1365-2672.2002.01577.x. http://dx.doi.org/10.1046/j.1365-2672.2002.01577.xCrossrefGoogle Scholar

  • [20] Papanikolaou, S., Ruiz-Sanchez, P., Pariset, B., Blanchard, F., & Fick, M. (2000). High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology, 77, 191–208. DOI: 10.1016/S0168-1656(99)00217-5. http://dx.doi.org/10.1016/S0168-1656(99)00217-5CrossrefGoogle Scholar

  • [21] Park, Y. C., Lee, D. Y., Lee, D. H., Kim, K. Y., Ryu, Y. W., & Seo, J. H. (2005). Proteomics and physiology of erythritolproducing strains. Journal of Chromatography B, 815, 251–260. DOI: 10.1016/j.jchromb.2004.10.065. http://dx.doi.org/10.1016/j.jchromb.2004.10.065CrossrefGoogle Scholar

  • [22] Park, J. B., Seo, B. C., Kim, J. R., & Park, Y. K. (1998). Production of erythritol in fed-batch cultures of Trichosporon sp. Journal of Fermentation and Bioengineering, 86, 577–580. DOI: 10.1016/S0922-338X(99)80010-5. http://dx.doi.org/10.1016/S0922-338X(99)80010-5CrossrefGoogle Scholar

  • [23] Peksel, A., Torres, N. V., Liu, J., Juneau, G., & Kubicek, C. P. (2002). 13C-NMR analysis of glucose metabolism during citric acid production by Aspergillus niger. Applied Microbiology and Biotechnology, 58, 157–163. DOI: 10.1007/s00253-001-0839-x. http://dx.doi.org/10.1007/s00253-001-0839-xCrossrefGoogle Scholar

  • [24] Pfeifer, V. F., Sohns, V. E., Conway, H. E., Lancaster, E. B., Dabic, S., & Griffin, E. L., Jr. (1960). Two-stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Industrial Engineering and Chemistry, 52, 201–205. DOI: 10.1021/ie50603a020. http://dx.doi.org/10.1021/ie50603a020CrossrefGoogle Scholar

  • [25] Rymowicz, W., Rywińska, A., Żarowska, B., & Juszczyk, P. (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chemical Papers, 60, 391–394. DOI: 10.2478/s11696-006-0071-3. http://dx.doi.org/10.2478/s11696-006-0071-3CrossrefWeb of ScienceGoogle Scholar

  • [26] Soccol, C. R., Vandenberghe, L. P. S., Rodrigues, C., & Pandey, A. (2006). New perspectives for citric acid production and application. Food Technology and Biotechnology, 44, 141–149. Google Scholar

  • [27] Thompson, J. C., & He, B. B. (2004). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22, 261–265. Google Scholar

  • [28] Venter, T., Kock, J. L. F., Botes, P. J., Smit, M. S., Hugo, A., & Joseph, M. (2004). Acetate enhances citric acid production by Yarrowia lipolytica when grown on sunflower oil. Systematic and Applied Microbiology, 27, 135–138. DOI: 10.1078/072320204322881736. http://dx.doi.org/10.1078/072320204322881736CrossrefGoogle Scholar

  • [29] Willke, T., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131–142. DOI: 10.1007/s00253-004-1733-0. http://dx.doi.org/10.1007/s00253-004-1733-0CrossrefGoogle Scholar

  • [30] Wittlich, P., Themann, A., & Vorlop, K. D. (2001). Conversion of glycerol to 1,3-prepanediol by a newly isolated thermophilic strain. Biotechnology Letters, 23, 463–466. DOI: 10.1023/A:1010329321185. http://dx.doi.org/10.1023/A:1010329321185CrossrefGoogle Scholar

  • [31] Wojtatowicz, M., Rymowicz, W., & Kautola, H. (1991). Comparison of different strains of the yeast Yarrowia lipolytica for citric acid production from glucose hydrol. Applied Biochemistry and Biotechnology, 31, 165–174. http://dx.doi.org/10.1007/BF02921787Google Scholar

About the article

Published Online: 2008-05-02

Published in Print: 2008-06-01


Citation Information: Chemical Papers, Volume 62, Issue 3, Pages 239–246, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-008-0018-y.

Export Citation

© 2008 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in