Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 62, Issue 6

Issues

Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications

Jindřiška Bočková
  • Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucy Vojtová
  • Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Radek Přikryl
  • Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Čechal
  • Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josef Jančář
  • Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-10-11 | DOI: https://doi.org/10.2478/s11696-008-0076-1

Abstract

A novel material for hard tissue implants has been prepared. The ultra-high molecular weight polyethylene (UHMWPE) was grafted with collagen I, to improve its biocompatibility with soft tissue in case of its usage in bone engineering. Before collagen immobilization, commercial grade UHMWPE was treated with air plasma to introduce hydroperoxides onto the surface and subsequently grafted with carboxylic acid to functionalize the surface. Acrylic acid and itaconic acid were used for surface functionalization. After graft polymerization of carboxylic acids, collagen was immobilized covalently through the amide bonds between residual amino and carboxyl groups in the presence of water-soluble carbodiimide/hydroxysuccinimide cross-linking system. Each step of modification was characterized using spectroscopic (EPR, ATR-FTIR, and XPS), microscopic (SEM and CLSM), and contact angle measurement methods. The experimental results showed that plasma treatment led to a generation of free radicals on the UHMWPE surface resulting in the formation of unstable hydroperoxides. These reactive species were used to graft unsaturated carboxylic acids onto UHMWPE. Consequently, collagen was grafted via the-NH2 and-COOH reaction. The obtained experimental data along with microscopic observations confirmed the success of graft poly-merization of itaconic as well as of acrylic acid and collagen immobilization onto the UHMWPE surface.

Keywords: ultra-high molecular weight polyethylene; collagen immobilization; biocompatibility; free radical; cold plasma

  • [1] Cheng, Z., & Teoh, S.-H. (2004). Surface modification of ultra thin poly (ɛ-caprolactone) films using acrylic acid and collagen. Biomaterials, 25, 1991–2001. DOI: 10.1016/j.biomaterials.2003.08.038. http://dx.doi.org/10.1016/j.biomaterials.2003.08.038CrossrefGoogle Scholar

  • [2] Fang, L., Leng, Y., & Gao, P. (2005). Processing of hydroxyapatite reinforced ultra-high molecular weight polyethylene for biomedical applications. Biomaterials, 26, 3471–3478. DOI: 10.1016/j.biomaterials.2004.09.022. http://dx.doi.org/10.1016/j.biomaterials.2004.09.022CrossrefGoogle Scholar

  • [3] Fang, L., Leng, Y., & Gao, P. (2006). Processing and mechanical properties of HA/UHMWPE nanocomposites. Biomaterials, 27, 3701–3707. DOI: 10.1016/j.biomaterials.2006.02.023. http://dx.doi.org/10.1016/j.biomaterials.2006.02.023CrossrefGoogle Scholar

  • [4] Goldman, M., Gronsky, R., Ranganthan, R., & Pruitt, L. (1996). The effects of gamma radiation sterilization and ageing on the structure and morphology of medical grade ultra high molecular weight polyethylene. Polymer, 37, 2909–2913. DOI: 10.1016/0032-3861(96)89386-4. http://dx.doi.org/10.1016/0032-3861(96)89386-4CrossrefGoogle Scholar

  • [5] Jacobs, O., Mentz, N., Poeppel, A., & Schulte, K. (2000). Sliding wear performance of HDPE reinforced by continuous UHMWPE fibres. Wear, 244, 20–28. DOI: 10.1016/S0043-1648(00)00419-1. http://dx.doi.org/10.1016/S0043-1648(00)00419-1CrossrefGoogle Scholar

  • [6] Kinoshita, Y., Kuzuhara, T., Kirigakubo, M., Kobayashi, M., & Shimura, K. (1993). Soft tissue reaction to collagen-immobilized porous polyethylene: subcutaneous implantation in rats for 20 wk. Biomaterials, 14, 209–215. DOI: 10.1016/0142-9612(93)90025-W. http://dx.doi.org/10.1016/0142-9612(93)90025-WCrossrefGoogle Scholar

  • [7] Kurtz, S. M., Muratoglu, O. K., Evans, M., & Edidin, A. A. (1999). Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials, 20, 1659–1688. DOI: 10.1016/S0142-9612(99)00053-8. http://dx.doi.org/10.1016/S0142-9612(99)00053-8CrossrefGoogle Scholar

  • [8] Kurtz, S. M. (2004). The UHMWPE Handbook, Ultra-High Molecular Weight Polyethylene in Total Joint Replacement (1st ed.). Amsterdam: Elsevier. Google Scholar

  • [9] Lee, A. W.-W. (1998). In vitro degradation of ultra high molecular weight polyethylene (UHMWPE) by oxidative and/or hydrolytic processes. M.Sc. thesis, University of Toronto, Toronto. Google Scholar

  • [10] Lee, C. H., Singla, A., & Lee, Y. (2001). Biomedical applications of collagen — review. International Journal of Pharmaceutics, 221, 1–22. DOI: 10.1016/S0378-5173(01)00691-3. http://dx.doi.org/10.1016/S0378-5173(01)00691-3CrossrefGoogle Scholar

  • [11] Lee, S.-D. (1996). Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials, 17, 1599–1608. DOI: 10.1016/0142-9612(95)00316-9. http://dx.doi.org/10.1016/0142-9612(95)00316-9CrossrefGoogle Scholar

  • [12] Nakaoka, R. (2003). Neural differentiation of midbrain cells on various protein-immobilized polyethylene films. Journal of Biomedical Materials Research, 64, 439–446. DOI: 10.1002/jbm.a.10430. http://dx.doi.org/10.1002/jbm.a.10430CrossrefGoogle Scholar

  • [13] Olde Damink, L. H. H. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17, 765–773. DOI: 10.1016/0142-9612(96)81413-X. http://dx.doi.org/10.1016/0142-9612(96)81413-XCrossrefGoogle Scholar

  • [14] Peterkova, P., & Lapcik, L., Jr. (2000). Kolagen — vlastnosti, modifikace a aplikace. Chemické Listy, 94, 371–379 (in Czech). Google Scholar

  • [15] Pruitt, L. A. (2005). Deformation, yielding, fracture, and fatigue behavior of conventionaland highly cross-linked ultra high molecular weight polyethylene. Biomaterials, 26, 905–915. DOI: 10.1016/j.biomaterials.2004.03.022. http://dx.doi.org/10.1016/j.biomaterials.2004.03.022CrossrefGoogle Scholar

  • [16] Pulat, M., & Babayigit, D. (2001). Surface modification of PU membranes by graft copolymerization with acrylamide and itaconic acid monomers. Polymer Testing, 20, 209–216. DOI: 10.1016/S0142-9418(00)00026-X. http://dx.doi.org/10.1016/S0142-9418(00)00026-XCrossrefGoogle Scholar

  • [17] Roy, S., Bag, S., & Pal, S. (2004). In vitro biomechanical evaluation of UHMWPE and its composites as biomaterial. Trends in Biomaterials & Artificial Organs, 17, 54–60. Google Scholar

  • [18] Schmalzried, T. P., & Callaghan, J. J. (1999). Wear in total hip and knee replacements. The Journal of Bone and Joint Surgery, 81, 115–136. Google Scholar

  • [19] Zhang, Y., Wang, W., Feng, Q., Fuzhai, C., & Xu, Y. (2006). A novel method to immobilize collagen on polypropylene film as substrate for hepatocyte culture. Materials Science and Engineering, C26, 657–663. DOI: 10.1016/j.msec.2005.08.039. CrossrefGoogle Scholar

About the article

Published Online: 2008-10-11

Published in Print: 2008-12-01


Citation Information: Chemical Papers, Volume 62, Issue 6, Pages 580–588, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-008-0076-1.

Export Citation

© 2008 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in