Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 20, 2008

Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites

  • Jaroslav Stejskal EMAIL logo , Miroslava Trchová , Libuše Brožová and Jan Prokeš
From the journal Chemical Papers

Abstract

Polyaniline (PANI) nanotubes were prepared by oxidation of aniline in 0.4 M acetic acid. They were subsequently used as a reductant of silver nitrate in 1 M nitric acid, water or 1 M ammonium hydroxide at various molar ratios of silver nitrate to PANI. The resulting PANI-silver composites contained silver nanoparticles of 40–60 nm size along with macroscopic silver flakes. Under these experimental conditions, silver was always produced outside the PANI nanotubes. Changes in the molecular structure of PANI were analyzed by FTIR spectroscopy. Silver content in the composites was determined as a residue by thermogravimetric analysis, and confirmed by density measurements. The highest conductivity of a composite, 68.5 S cm−1, was obtained at the nitrate to PANI molar ratio of 0.67 in water. Also, the best reaction yield was obtained in water. Reductions performed in an acidic medium gave products with conductivity of 10−4–10−2 S cm−1, whereas the reaction in alkaline solution yielded non-conducting products.

[1] Bazito, F. F. C., Silveiro, L. T., Torresi, R. M., & Córdoba de Torresi, S. I. (2008). On the stabilization of conducting pernigraniline salt by the synthesis and oxidation of polyaniline in hydrophobic ionic liquids. Physical Chemistry Chemical Physics, 10, 1457–1462. DOI: 10.1039/b714458. http://dx.doi.org/10.1039/b714458jSearch in Google Scholar

[2] Chen, Z., Xu, L., Li, W., Waje, M., & Yan, J. (2006). Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology, 17, 5254–5259. DOI: 10.1088/0957-4484/17/20/035. http://dx.doi.org/10.1088/0957-4484/17/20/03510.1088/0957-4484/17/20/035Search in Google Scholar

[3] Chiang, J. C., & MacDiarmid, A. G. (1986). Polyaniline: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 13, 193–205. DOI: 10.1016/0379-6779(86)90070-6. http://dx.doi.org/10.1016/0379-6779(86)90070-610.1016/0379-6779(86)90070-6Search in Google Scholar

[4] Dawn, A., & Nandi, A. K. (2006). Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite. Journal of Physical Chemistry B, 110, 18291–18298. DOI: 10.1021/jp063269z. http://dx.doi.org/10.1021/jp063269z10.1021/jp063269zSearch in Google Scholar

[5] Dawn, A., Mukherjee, P., & Nandi, A. K. (2007). Preparation and size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer. Langmuir, 23, 5231–5237. DOI: 10.1021/la063229m. http://dx.doi.org/10.1021/la063229m10.1021/la063229mSearch in Google Scholar

[6] Dedeouche, I., & Epron, F. (2007). Promoting effect of electroactive polymer supports on the catalytic performances on palladium-based catalysts for nitrite reduction in water. Applied Catalysis B: Environmental, 76, 291–299. DOI: 10.1016/j.apcatb.2007.06.002. http://dx.doi.org/10.1016/j.apcatb.2007.06.00210.1016/j.apcatb.2007.06.002Search in Google Scholar

[7] Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112. http://dx.doi.org/10.1016/j.polymer.2006.03.11210.1016/j.polymer.2006.03.112Search in Google Scholar

[8] Drelinkiewicz, A., Waksmundzka-Góra, A., Sobczak, J. W., & Stejskal, J. (2007). Hydrogenation of 2-ethyl-9,10-anthraquinone on Pd-polyaniline(SiO2) catalyst. The effect of humidity. Applied Catalysis A: General, 333, 219–228. DOI: 10.1016/j.apcata.2007.09.011. http://dx.doi.org/10.1016/j.apcata.2007.09.01110.1016/j.apcata.2007.09.011Search in Google Scholar

[9] Epstein, A. J., Ginder, J. M., Zuo, F., Bigelow, R. W., Woo, H. S., Tanner, D. B., Richter, A. F., Huang, W. S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline. Synthetic Metals, 18, 303–309. DOI: 10.1016/0379-6779(87)90896-4. http://dx.doi.org/10.1016/0379-6779(87)90896-410.1016/0379-6779(87)90896-4Search in Google Scholar

[10] Han, J., Song, G., & Guo, R. (2006). A facile solution route for polymeric hollow spheres with controllable size. Advanced Materials, 18, 3140–3144. DOI: 10.1002/adma.200600282. http://dx.doi.org/10.1002/adma.20060028210.1002/adma.200600282Search in Google Scholar

[11] Jin, E., Liu, N., Lu, X., & Zhang, W. (2007). Novel micro/nanostructures of polyaniline in the presence of different amino acids via self-assembly process. Chemistry Letters, 36, 1288–1289. DOI: 10.1246/cl.2007.1288. http://dx.doi.org/10.1246/cl.2007.128810.1246/cl.2007.1288Search in Google Scholar

[12] Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 2007, 5571–5577. DOI: 10.1002/ejic.200700608. http://dx.doi.org/10.1002/ejic.20070060810.1002/ejic.200700608Search in Google Scholar

[13] Konyushenko, E. N., Stejskal, J., Šeděnkov’a, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Search in Google Scholar

[14] Li, W., Jia, Q. X., & Wang, H.-L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloid. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032. http://dx.doi.org/10.1016/j.polymer.2005.11.03210.1016/j.polymer.2005.11.032Search in Google Scholar

[15] Park, M.-C., Sun, Q., & Deng, Y. (2007). Polyaniline microspheres consisting of highly crystalline nanorods. Macromolecular Rapid Communications, 28, 1237–1242. DOI: 10.1002/marc.200700066. http://dx.doi.org/10.1002/marc.20070006610.1002/marc.200700066Search in Google Scholar

[16] Ping, Z. (1996). In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92, 3063–3067. DOI: 10.1039/FT9969203063. http://dx.doi.org/10.1039/ft996920306310.1039/FT9969203063Search in Google Scholar

[17] Salavagione, H. J., Sanchis, C., & Morallón, E. (2007). Friendly conditions synthesis of platinum nanoparticles supported on a conducting polymer: Methanol electrooxidation. Journal of Physical Chemistry C, 111, 12454–12460. DOI: 10.1021/jp071037+. http://dx.doi.org/10.1021/jp071037+10.1021/jp071037+Search in Google Scholar

[18] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, in press. DOI: 10.1002/pi.2476. 10.1002/pi.2476Search in Google Scholar

[19] Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258. Search in Google Scholar

[20] Stejskal, J., Kratochvíl, P., & Jenkins A. D. (1996a). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-X. http://dx.doi.org/10.1016/0032-3861(96)81113-X10.1016/0032-3861(96)81113-XSearch in Google Scholar

[21] Stejskal, J., Kratochvíl, P., Armes, S. P., Lascelles, S. F., Riede, A., Helmstedt, M., Prokeš, J., & Křivka, I. (1996b). Polyaniline dispersions. 6. Stabilization by colloidal silica particles. Macromolecules, 29, 6814–6819. DOI: 10.1021/ma9603903. http://dx.doi.org/10.1021/ma960390310.1021/ma9603903Search in Google Scholar

[22] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006. 10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar

[23] Stejskal, J., Trchová, M., Kovářová, J., Omastová, M. & Prokeš, J. (2008a). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z10.2478/s11696-008-0009-zSearch in Google Scholar

[24] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008b). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSearch in Google Scholar

[25] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSearch in Google Scholar PubMed

[26] Wang, H.-L., Li, W., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508. http://dx.doi.org/10.1021/cm061950810.1021/cm0619508Search in Google Scholar

Published Online: 2008-11-20
Published in Print: 2009-2-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-008-0086-z/html
Scroll to top button