Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

See all formats and pricing
More options …
Volume 63, Issue 4 (Aug 2009)


Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)

Zuzana Košťálová
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zdenka Hromádková
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Ebringerová
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-05-27 | DOI: https://doi.org/10.2478/s11696-009-0035-5


Oil pumpkin (Cucurbita pepo L. var. Styriaca) is an economically important horticultural plant cultivated for oil production. After harvesting seeds, the residual biomass has a limited application and is usually left in the field. An experimental study was performed to evaluate the chemical composition of the seeded fruit oil pumpkin biomass (OP) dried by solvent-exchange using ethanol. The sugar composition of polysaccharides obtained by sequential extraction with water and dilute alkali indicated the prevalence of pectic polysaccharides. Hemicelulloses were released in higher amounts in the alkaline step. The chemical composition of OP and its individual tissues (peel, flesh and hairy flesh) was investigated and compared to the corresponding preparations of standard pumpkin (SP, Cucurbita pepo L.). The content of components (on oven-dry basis), calculated from the analysis data of the individual tissues, was estimated for OP: 7.9 % ash, 7.6 % Klason lignin, 19.3 % pectin (as uronic acids), 34.1 % neutral carbohydrates, and 27.4 % α-cellulose and for SP: 6.4 % ash, 4.0 % Klason lignin, 20.9% pectin (as uronic acids), 38.1% neutral carbohydrates, and 29.2 % α-cellulose, respectively. The OP biomass showed a higher proportion of hemicelluloses.

Keywords: Cucurbita pepo L. var. Styriaca; seeded pumpkin fruit; polysaccharides; pectin

  • [1] Ahmed, A. R., & Labavitch, J. M. (2007). A simplified method for accurate determination of cell wall uronide content. Journal of Food Biochemistry, 1, 361.365. DOI: 10.1111/j.1745-4514.1978.tb00193.x. CrossrefGoogle Scholar

  • [2] Bezold, T. N., Loy, J. B., & Minocha, S. C. (2003). Changes in the cellular content of polyamines in different tissues of seed and fruit of normal and a hull-less seed variety of pumpkin during development. Plant Science, 164, 743.752. DOI: 10.1016/S0168-9452(03)00035-9. http://dx.doi.org/10.1016/S0168-9452(03)00035-9CrossrefGoogle Scholar

  • [3] Brendel, O., Iannetta, P. P. M., & Stewart, D. (2000). A rapid and simple method to isolate pure α-cellulose. Phytochemical Analysis, 11, 7–10. DOI: 10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U. http://dx.doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-UCrossrefGoogle Scholar

  • [4] de Escalada Pla, M. F., Ponce, N. M., Stortz, C., Gerchenson, L. N., & Rojas, A. M. (2007). Composition and functional properties of enriched fiber products obtained from pumpkin (Cucurbita moschata Duchesne ex Poiret). LWT-Food Science and Technology, 40, 1176–1185. DOI: 10.1016/j.lwt.2006.07.013. http://dx.doi.org/10.1016/j.lwt.2006.08.006CrossrefGoogle Scholar

  • [5] de Escalada Pla, M. F., Ponce, N. M., Wider, M. E., Stortz, C. A., Rojas, A. M., & Gerschenson, L. N. (2005). Chemical and biochemical changes of pumpkin (Cucurbita moschata Duch) tissue in relation to osmotic stress. Journal of the Science of Food and Agriculture, 85, 1852–1860. DOI: 10.1002/jsfa.2187. http://dx.doi.org/10.1002/jsfa.2187CrossrefGoogle Scholar

  • [6] Ebringerová, A., Hromádková, Z., & Heinze, T. (2005). Hemicellulose. Advances in Polymer Science, 186, 1–67. DOI: 10.1007/b136812. http://dx.doi.org/10.1007/b136816Web of ScienceCrossrefGoogle Scholar

  • [7] Ebringerová, A., Hromádková, Z., Hříbalová, V., Xu, C., Holmbom, B., Sundberg, A., & Willför, S. (2008a). Norway spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. International Journal of Biological Macromolecules, 42, 1–5. DOI: 10.1016/j.ijbiomac.2007.08.001. http://dx.doi.org/10.1016/j.ijbiomac.2007.08.001CrossrefWeb of ScienceGoogle Scholar

  • [8] Ebringerová, A., Hromádková, Z., Košťalová, Z., & Sasinková, V. (2008b). Chemical valorization of agricultural by-products: isolation and characterization of xylan-based antioxidants from almond shell biomass. Bioresources, 3, 60–70. Google Scholar

  • [9] Essien, A. I., Ebana, R. U. B., & Udo, H. B. (1992). Chemical evaluation of the pod and of the fluted pumpkin (Telfairia occidentalis) fruit. Food Chemistry, 45, 175.178. DOI: 10.1016/0308-8146(92)90110-N. CrossrefGoogle Scholar

  • [10] Esuoso, K., Lutz, H., Kutubuddin, M., & Bayer, E. (1998). Chemical composition and potential of some unterutilized tropical biomass. I: fluted pumpkin (Telfaria occidentalis). Food Chemistry, 61, 487–492. DOI: 10.1016/S0308-8146(97)00096-4. http://dx.doi.org/10.1016/S0308-8146(97)00096-4CrossrefGoogle Scholar

  • [11] Evangeliou, V., Ptitchkina, N. M., & Morris, E. R. (2005). Solution viscosity and structural modification of pumpkin biopectin. Food Hydrocolloids, 19, 1032–1036. DOI: 10.1016/j.foodhyd.2005.01.004. http://dx.doi.org/10.1016/j.foodhyd.2005.01.004CrossrefGoogle Scholar

  • [12] Fahim, A. A., Fattah, A-E., Agha, A. M., & Gad, T. Z. (1995). Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacological Research, 31, 73–79. DOI: 10.1016/1043-6618(95)80051-4. http://dx.doi.org/10.1016/1043-6618(95)80051-4CrossrefGoogle Scholar

  • [13] Fu, C., Tian, H., Cai, T., Liu, Y., & Li, Q. (2007). Some properties of an acidic protein-bound polysaccharide from the fruit of pumpkin. Food Chemistry, 100, 944–947. DOI: 10.1016/j.foodchem.2005.10.049. http://dx.doi.org/10.1016/j.foodchem.2005.10.049CrossrefGoogle Scholar

  • [14] Fu, C., Shi, H., & Li, Q. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition, 61, 70–77. DOI: 10.1007/s11130-006-0016-6. http://dx.doi.org/10.1007/s11130-006-0016-6CrossrefGoogle Scholar

  • [15] Hromádková, Z., & Ebringerová, A. (2003). Ultrasonic extraction of plant materials-investigation of hemicellulose release from buckwheat hulls. Ultrasonics Sonochemistry, 10, 127–133. DOI: 10.1016/S1350-4177(03)00094-4. http://dx.doi.org/10.1016/S1350-4177(03)00094-4CrossrefGoogle Scholar

  • [16] Jun, H-I., Lee, C-H., Song, G-S., & Kim, Y-S. (2006). Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Science and Technology, 39, 554–561. DOI: 10.1016/j.lwt.2005.03.004. http://dx.doi.org/10.1016/j.lwt.2005.03.004CrossrefGoogle Scholar

  • [17] Kačuráková, M., Capek, P., Sasinková, V., Wellner, N., & Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43, 195–203. DOI: 10.1016/S0144-8617(00)00151-X. http://dx.doi.org/10.1016/S0144-8617(00)00151-XCrossrefGoogle Scholar

  • [18] Kačuráková, M., Wellner, N., Ebringerová, A., Hromádková, Z., Wilson, R. H., & Belton P. S. (1999). Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocolloids, 13, 35–41. DOI: 10.1016/S0268-005X(98)00067-8. http://dx.doi.org/10.1016/S0268-005X(98)00067-8CrossrefGoogle Scholar

  • [19] Kurz, C., Carle, R., & Schieber, A. (2008). Characterisation of cell wall polysaccharide profiles of apricots (Prunus armeniaca L.), peaches (Prunus persica L.), and pumpkins (Cucurbita sp.) for the evaluation of fruit product authenticity. Food Chemistry, 106, 421–430. DOI: 10.1016/j.foodchem.2007.05.078. http://dx.doi.org/10.1016/j.foodchem.2007.05.078CrossrefWeb of ScienceGoogle Scholar

  • [20] Li, Q., Fu, C., Riu, Y., Hu, G., & Cai, T. (2005). Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats. Plant Foods for Human Nutrition, 60, 13–16. DOI: 10.1007/s11130-005-2536-x. http://dx.doi.org/10.1007/s11130-005-2536-xCrossrefGoogle Scholar

  • [21] Mc Cance, R. A., & Widdowson, E. M. (1991). The composition of foods (5th ed.). London: Ministry of Agriculture, Fisheries and Food. Google Scholar

  • [22] Mort, A. J., Qiu, F., Nimtz, M., Stark, R., & Bell-Eunice, G. (2002). Structure of xylogalacturonan fragments from watermelon cell wall pectin. Implications for the action pattern of endopolygalacturonase on xylogalacturonan. In Proceedings of the 21st International Carbohydrate Symposium, July 7–12, 2002 (pp. 287–339). Cairns: University of Western Australia. Google Scholar

  • [23] Murkovic, M., Mülleder, U., & Neunteufl, H. (2002). Carotenoid content in different varieties of pumpkin. Journal of Food Composition Analysis, 15, 633–638. DOI: 10.1006/jfca.2002.1052. http://dx.doi.org/10.1006/jfca.2002.1052CrossrefGoogle Scholar

  • [24] Oosterveld, A., Beldmanm G., Schols, H. A., & Voragen, A. G. L. (2000). Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydrate Research, 328, 185–197. DOI: 10.1016/S0008-6215(00)00095-1. http://dx.doi.org/10.1016/S0008-6215(00)00095-1CrossrefGoogle Scholar

  • [25] Ptitchkina, N. M., Danilova, A. I., Doxastakis, G., Kasapis, S., & Morris, E. R. (1994). Pumpkin pectin: gel formation at unusually low concentration. Carbohydrate Polymers, 23, 265–273. DOI: 10.1016/0144-8617(94)90189-9. http://dx.doi.org/10.1016/0144-8617(94)90189-9CrossrefGoogle Scholar

  • [26] Ptitchkina, N. M., Novokreschonova, L. V., Piskunova, G. V., & Morris, E. R. (1998). Large enhancements in loaf volume and organoleptic acceptability of wheat bread by small additions of pumpkin powder: possible role of acetylated pectin in stabilizing gas-cell structure. Food Hydrocolloids, 12, 333–337. DOI: 10.1016/S0268-005X(98)00024-1. http://dx.doi.org/10.1016/S0268-005X(98)00024-1CrossrefGoogle Scholar

  • [27] Rao, P., & Pattabiraman, T. N. (1989). Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Analytical Biochemistry, 181, 18–22. DOI: 10.1016/0003-2697(89)90387-4. http://dx.doi.org/10.1016/0003-2697(89)90387-4CrossrefGoogle Scholar

  • [28] Ratnayake, R. M. S., Hurst, P. L., & Melton, L. D. (1999). Texture and the cell wall polysaccharides of buttercup squash ‘Delica’ (Cucurbita maxima). New Zealand Journal of Crop and Horticultural Science, 27, 133–143. CrossrefGoogle Scholar

  • [29] Shkodina, O. G., Zeltser, O. A., Selivanov, N. Y., & Ignatov, V. V. (1998). Enzymic extraction of pectin preparations from pumpkin. Food Hydrocolloids, 12, 313–316. DOI: 10.1016/S0268-005X(98)00020-4. http://dx.doi.org/10.1016/S0268-005X(98)00020-4CrossrefGoogle Scholar

  • [30] Stuart, S. G., & Loy, J. B. (1983). Comparison of testa development in normal and hull-less seeded strains of Cucurbita pepo L. Botanical Gazette, 144, 491–500. http://dx.doi.org/10.1086/337402Google Scholar

  • [31] Teppner, H. (2000). Cucurbita pepo (Cucurbitaceae) — history, seed coat types, thin coated seeds and their genetics. Phyton-Annales Rei Botanicae, 40, 1–42. Google Scholar

  • [32] Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. DOI: 10.1016/j.jfca.2006.01.003. http://dx.doi.org/10.1016/j.jfca.2006.01.003CrossrefGoogle Scholar

  • [33] Voragen, A. G. J., Pilnik, W., Thibault, J.-F., Axelos, M. A. V., & Renard, C. M. G. C. (1995). Pectins. In A. M. Stephen (Ed.), Food polysaccharides and their applications (pp. 287–339). New York: Marcel Dekker. Google Scholar

  • [34] Wang, D., Zhou, X., Li, L., Hou, Y., Sun, J., & Wang, J. (2008). A rapid quantitative method for polysaccharides in green tea and oolong tea. European Food Research and Technology, 226, 691–696. DOI: 10.1007/s00217-007-0578-z. http://dx.doi.org/10.1007/s00217-007-0578-zWeb of ScienceCrossrefGoogle Scholar

  • [35] Yuan, X., Wang, J., & Yao, H. (2005). Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chemistry, 90, 759–764. DOI: 10.1016/j.foodchem.2004.05.025. http://dx.doi.org/10.1016/j.foodchem.2004.05.025CrossrefGoogle Scholar

  • [36] Zraidi, A. M., Pachner, M., Lelley, T., & Obermayer, R. (2003). On the genetics and histology of the hull-less character of Styrian oil-pumpkin (Cucurbita pepo L.). Cucurbit Genetics Cooperative Report, 26, 57–61. Google Scholar

About the article

Published Online: 2009-05-27

Published in Print: 2009-08-01

Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-009-0035-5.

Export Citation

© 2009 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in