Jump to ContentJump to Main Navigation
Show Summary Details

Chemical Papers


IMPACT FACTOR 2015: 1.326

SCImago Journal Rank (SJR) 2015: 0.382
Source Normalized Impact per Paper (SNIP) 2015: 0.560
Impact per Publication (IPP) 2015: 1.279

Online
ISSN
1336-9075
See all formats and pricing
Volume 63, Issue 4 (Aug 2009)

Issues

Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)

Zuzana Košťálová
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
  • Email:
/ Zdenka Hromádková
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
  • Email:
/ Anna Ebringerová
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
  • Email:
Published Online: 2009-05-27 | DOI: https://doi.org/10.2478/s11696-009-0035-5

Abstract

Oil pumpkin (Cucurbita pepo L. var. Styriaca) is an economically important horticultural plant cultivated for oil production. After harvesting seeds, the residual biomass has a limited application and is usually left in the field. An experimental study was performed to evaluate the chemical composition of the seeded fruit oil pumpkin biomass (OP) dried by solvent-exchange using ethanol. The sugar composition of polysaccharides obtained by sequential extraction with water and dilute alkali indicated the prevalence of pectic polysaccharides. Hemicelulloses were released in higher amounts in the alkaline step. The chemical composition of OP and its individual tissues (peel, flesh and hairy flesh) was investigated and compared to the corresponding preparations of standard pumpkin (SP, Cucurbita pepo L.). The content of components (on oven-dry basis), calculated from the analysis data of the individual tissues, was estimated for OP: 7.9 % ash, 7.6 % Klason lignin, 19.3 % pectin (as uronic acids), 34.1 % neutral carbohydrates, and 27.4 % α-cellulose and for SP: 6.4 % ash, 4.0 % Klason lignin, 20.9% pectin (as uronic acids), 38.1% neutral carbohydrates, and 29.2 % α-cellulose, respectively. The OP biomass showed a higher proportion of hemicelluloses.

Keywords: Cucurbita pepo L. var. Styriaca; seeded pumpkin fruit; polysaccharides; pectin

  • [1] Ahmed, A. R., & Labavitch, J. M. (2007). A simplified method for accurate determination of cell wall uronide content. Journal of Food Biochemistry, 1, 361.365. DOI: 10.1111/j.1745-4514.1978.tb00193.x. [Crossref]

  • [2] Bezold, T. N., Loy, J. B., & Minocha, S. C. (2003). Changes in the cellular content of polyamines in different tissues of seed and fruit of normal and a hull-less seed variety of pumpkin during development. Plant Science, 164, 743.752. DOI: 10.1016/S0168-9452(03)00035-9. http://dx.doi.org/10.1016/S0168-9452(03)00035-9 [Crossref]

  • [3] Brendel, O., Iannetta, P. P. M., & Stewart, D. (2000). A rapid and simple method to isolate pure α-cellulose. Phytochemical Analysis, 11, 7–10. DOI: 10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U. http://dx.doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U [Crossref]

  • [4] de Escalada Pla, M. F., Ponce, N. M., Stortz, C., Gerchenson, L. N., & Rojas, A. M. (2007). Composition and functional properties of enriched fiber products obtained from pumpkin (Cucurbita moschata Duchesne ex Poiret). LWT-Food Science and Technology, 40, 1176–1185. DOI: 10.1016/j.lwt.2006.07.013. http://dx.doi.org/10.1016/j.lwt.2006.08.006 [Crossref]

  • [5] de Escalada Pla, M. F., Ponce, N. M., Wider, M. E., Stortz, C. A., Rojas, A. M., & Gerschenson, L. N. (2005). Chemical and biochemical changes of pumpkin (Cucurbita moschata Duch) tissue in relation to osmotic stress. Journal of the Science of Food and Agriculture, 85, 1852–1860. DOI: 10.1002/jsfa.2187. http://dx.doi.org/10.1002/jsfa.2187 [Crossref]

  • [6] Ebringerová, A., Hromádková, Z., & Heinze, T. (2005). Hemicellulose. Advances in Polymer Science, 186, 1–67. DOI: 10.1007/b136812. http://dx.doi.org/10.1007/b136816 [Web of Science] [Crossref]

  • [7] Ebringerová, A., Hromádková, Z., Hříbalová, V., Xu, C., Holmbom, B., Sundberg, A., & Willför, S. (2008a). Norway spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. International Journal of Biological Macromolecules, 42, 1–5. DOI: 10.1016/j.ijbiomac.2007.08.001. http://dx.doi.org/10.1016/j.ijbiomac.2007.08.001 [Crossref] [Web of Science]

  • [8] Ebringerová, A., Hromádková, Z., Košťalová, Z., & Sasinková, V. (2008b). Chemical valorization of agricultural by-products: isolation and characterization of xylan-based antioxidants from almond shell biomass. Bioresources, 3, 60–70.

  • [9] Essien, A. I., Ebana, R. U. B., & Udo, H. B. (1992). Chemical evaluation of the pod and of the fluted pumpkin (Telfairia occidentalis) fruit. Food Chemistry, 45, 175.178. DOI: 10.1016/0308-8146(92)90110-N. [Crossref]

  • [10] Esuoso, K., Lutz, H., Kutubuddin, M., & Bayer, E. (1998). Chemical composition and potential of some unterutilized tropical biomass. I: fluted pumpkin (Telfaria occidentalis). Food Chemistry, 61, 487–492. DOI: 10.1016/S0308-8146(97)00096-4. http://dx.doi.org/10.1016/S0308-8146(97)00096-4 [Crossref]

  • [11] Evangeliou, V., Ptitchkina, N. M., & Morris, E. R. (2005). Solution viscosity and structural modification of pumpkin biopectin. Food Hydrocolloids, 19, 1032–1036. DOI: 10.1016/j.foodhyd.2005.01.004. http://dx.doi.org/10.1016/j.foodhyd.2005.01.004 [Crossref]

  • [12] Fahim, A. A., Fattah, A-E., Agha, A. M., & Gad, T. Z. (1995). Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacological Research, 31, 73–79. DOI: 10.1016/1043-6618(95)80051-4. http://dx.doi.org/10.1016/1043-6618(95)80051-4 [Crossref]

  • [13] Fu, C., Tian, H., Cai, T., Liu, Y., & Li, Q. (2007). Some properties of an acidic protein-bound polysaccharide from the fruit of pumpkin. Food Chemistry, 100, 944–947. DOI: 10.1016/j.foodchem.2005.10.049. http://dx.doi.org/10.1016/j.foodchem.2005.10.049 [Crossref]

  • [14] Fu, C., Shi, H., & Li, Q. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition, 61, 70–77. DOI: 10.1007/s11130-006-0016-6. http://dx.doi.org/10.1007/s11130-006-0016-6 [Crossref]

  • [15] Hromádková, Z., & Ebringerová, A. (2003). Ultrasonic extraction of plant materials-investigation of hemicellulose release from buckwheat hulls. Ultrasonics Sonochemistry, 10, 127–133. DOI: 10.1016/S1350-4177(03)00094-4. http://dx.doi.org/10.1016/S1350-4177(03)00094-4 [Crossref]

  • [16] Jun, H-I., Lee, C-H., Song, G-S., & Kim, Y-S. (2006). Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Science and Technology, 39, 554–561. DOI: 10.1016/j.lwt.2005.03.004. http://dx.doi.org/10.1016/j.lwt.2005.03.004 [Crossref]

  • [17] Kačuráková, M., Capek, P., Sasinková, V., Wellner, N., & Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43, 195–203. DOI: 10.1016/S0144-8617(00)00151-X. http://dx.doi.org/10.1016/S0144-8617(00)00151-X [Crossref]

  • [18] Kačuráková, M., Wellner, N., Ebringerová, A., Hromádková, Z., Wilson, R. H., & Belton P. S. (1999). Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocolloids, 13, 35–41. DOI: 10.1016/S0268-005X(98)00067-8. http://dx.doi.org/10.1016/S0268-005X(98)00067-8 [Crossref]

  • [19] Kurz, C., Carle, R., & Schieber, A. (2008). Characterisation of cell wall polysaccharide profiles of apricots (Prunus armeniaca L.), peaches (Prunus persica L.), and pumpkins (Cucurbita sp.) for the evaluation of fruit product authenticity. Food Chemistry, 106, 421–430. DOI: 10.1016/j.foodchem.2007.05.078. http://dx.doi.org/10.1016/j.foodchem.2007.05.078 [Crossref] [Web of Science]

  • [20] Li, Q., Fu, C., Riu, Y., Hu, G., & Cai, T. (2005). Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats. Plant Foods for Human Nutrition, 60, 13–16. DOI: 10.1007/s11130-005-2536-x. http://dx.doi.org/10.1007/s11130-005-2536-x [Crossref]

  • [21] Mc Cance, R. A., & Widdowson, E. M. (1991). The composition of foods (5th ed.). London: Ministry of Agriculture, Fisheries and Food.

  • [22] Mort, A. J., Qiu, F., Nimtz, M., Stark, R., & Bell-Eunice, G. (2002). Structure of xylogalacturonan fragments from watermelon cell wall pectin. Implications for the action pattern of endopolygalacturonase on xylogalacturonan. In Proceedings of the 21st International Carbohydrate Symposium, July 7–12, 2002 (pp. 287–339). Cairns: University of Western Australia.

  • [23] Murkovic, M., Mülleder, U., & Neunteufl, H. (2002). Carotenoid content in different varieties of pumpkin. Journal of Food Composition Analysis, 15, 633–638. DOI: 10.1006/jfca.2002.1052. http://dx.doi.org/10.1006/jfca.2002.1052 [Crossref]

  • [24] Oosterveld, A., Beldmanm G., Schols, H. A., & Voragen, A. G. L. (2000). Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydrate Research, 328, 185–197. DOI: 10.1016/S0008-6215(00)00095-1. http://dx.doi.org/10.1016/S0008-6215(00)00095-1 [Crossref]

  • [25] Ptitchkina, N. M., Danilova, A. I., Doxastakis, G., Kasapis, S., & Morris, E. R. (1994). Pumpkin pectin: gel formation at unusually low concentration. Carbohydrate Polymers, 23, 265–273. DOI: 10.1016/0144-8617(94)90189-9. http://dx.doi.org/10.1016/0144-8617(94)90189-9 [Crossref]

  • [26] Ptitchkina, N. M., Novokreschonova, L. V., Piskunova, G. V., & Morris, E. R. (1998). Large enhancements in loaf volume and organoleptic acceptability of wheat bread by small additions of pumpkin powder: possible role of acetylated pectin in stabilizing gas-cell structure. Food Hydrocolloids, 12, 333–337. DOI: 10.1016/S0268-005X(98)00024-1. http://dx.doi.org/10.1016/S0268-005X(98)00024-1 [Crossref]

  • [27] Rao, P., & Pattabiraman, T. N. (1989). Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Analytical Biochemistry, 181, 18–22. DOI: 10.1016/0003-2697(89)90387-4. http://dx.doi.org/10.1016/0003-2697(89)90387-4 [Crossref]

  • [28] Ratnayake, R. M. S., Hurst, P. L., & Melton, L. D. (1999). Texture and the cell wall polysaccharides of buttercup squash ‘Delica’ (Cucurbita maxima). New Zealand Journal of Crop and Horticultural Science, 27, 133–143. [Crossref]

  • [29] Shkodina, O. G., Zeltser, O. A., Selivanov, N. Y., & Ignatov, V. V. (1998). Enzymic extraction of pectin preparations from pumpkin. Food Hydrocolloids, 12, 313–316. DOI: 10.1016/S0268-005X(98)00020-4. http://dx.doi.org/10.1016/S0268-005X(98)00020-4 [Crossref]

  • [30] Stuart, S. G., & Loy, J. B. (1983). Comparison of testa development in normal and hull-less seeded strains of Cucurbita pepo L. Botanical Gazette, 144, 491–500. http://dx.doi.org/10.1086/337402

  • [31] Teppner, H. (2000). Cucurbita pepo (Cucurbitaceae) — history, seed coat types, thin coated seeds and their genetics. Phyton-Annales Rei Botanicae, 40, 1–42.

  • [32] Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. DOI: 10.1016/j.jfca.2006.01.003. http://dx.doi.org/10.1016/j.jfca.2006.01.003 [Crossref]

  • [33] Voragen, A. G. J., Pilnik, W., Thibault, J.-F., Axelos, M. A. V., & Renard, C. M. G. C. (1995). Pectins. In A. M. Stephen (Ed.), Food polysaccharides and their applications (pp. 287–339). New York: Marcel Dekker.

  • [34] Wang, D., Zhou, X., Li, L., Hou, Y., Sun, J., & Wang, J. (2008). A rapid quantitative method for polysaccharides in green tea and oolong tea. European Food Research and Technology, 226, 691–696. DOI: 10.1007/s00217-007-0578-z. http://dx.doi.org/10.1007/s00217-007-0578-z [Web of Science] [Crossref]

  • [35] Yuan, X., Wang, J., & Yao, H. (2005). Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chemistry, 90, 759–764. DOI: 10.1016/j.foodchem.2004.05.025. http://dx.doi.org/10.1016/j.foodchem.2004.05.025 [Crossref]

  • [36] Zraidi, A. M., Pachner, M., Lelley, T., & Obermayer, R. (2003). On the genetics and histology of the hull-less character of Styrian oil-pumpkin (Cucurbita pepo L.). Cucurbit Genetics Cooperative Report, 26, 57–61.

About the article

Published Online: 2009-05-27

Published in Print: 2009-08-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-009-0035-5. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zuzana Košťálová, Mario Aguedo, and Zdenka Hromádková
Chemical Engineering and Processing: Process Intensification, 2015
[2]
Muruganantham Mookkan
American Journal of Plant Sciences, 2015, Volume 06, Number 01, Page 157
[3]
Magda Piedad Valdes Restrepo, Sanín Ortiz Grisales, Franco Alirio Vallejo Cabrera, and Diosdado Baena García
Acta Agronómica, 2014, Volume 63, Number 3, Page 282
[4]
Zuzana Košťálová, Zdenka Hromádková, and Anna Ebringerová
Carbohydrate Polymers, 2013, Volume 93, Number 1, Page 163
[5]
Gabriela Nosáľová, Ľubica Prisenžňáková, Zuzana Košťálová, Anna Ebringerová, and Zdenka Hromádková
Fitoterapia, 2011, Volume 82, Number 3, Page 357
[6]
Zdenka Hromádková, Ján Hirsch, and Anna Ebringerová
Chemical Papers, 2010, Volume 64, Number 5

Comments (0)

Please log in or register to comment.
Log in