Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 27, 2009

Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)

  • Zuzana Košťálová EMAIL logo , Zdenka Hromádková and Anna Ebringerová
From the journal Chemical Papers

Abstract

Oil pumpkin (Cucurbita pepo L. var. Styriaca) is an economically important horticultural plant cultivated for oil production. After harvesting seeds, the residual biomass has a limited application and is usually left in the field. An experimental study was performed to evaluate the chemical composition of the seeded fruit oil pumpkin biomass (OP) dried by solvent-exchange using ethanol. The sugar composition of polysaccharides obtained by sequential extraction with water and dilute alkali indicated the prevalence of pectic polysaccharides. Hemicelulloses were released in higher amounts in the alkaline step. The chemical composition of OP and its individual tissues (peel, flesh and hairy flesh) was investigated and compared to the corresponding preparations of standard pumpkin (SP, Cucurbita pepo L.). The content of components (on oven-dry basis), calculated from the analysis data of the individual tissues, was estimated for OP: 7.9 % ash, 7.6 % Klason lignin, 19.3 % pectin (as uronic acids), 34.1 % neutral carbohydrates, and 27.4 % α-cellulose and for SP: 6.4 % ash, 4.0 % Klason lignin, 20.9% pectin (as uronic acids), 38.1% neutral carbohydrates, and 29.2 % α-cellulose, respectively. The OP biomass showed a higher proportion of hemicelluloses.

[1] Ahmed, A. R., & Labavitch, J. M. (2007). A simplified method for accurate determination of cell wall uronide content. Journal of Food Biochemistry, 1, 361.365. DOI: 10.1111/j.1745-4514.1978.tb00193.x. 10.1111/j.1745-4514.1978.tb00193.xSearch in Google Scholar

[2] Bezold, T. N., Loy, J. B., & Minocha, S. C. (2003). Changes in the cellular content of polyamines in different tissues of seed and fruit of normal and a hull-less seed variety of pumpkin during development. Plant Science, 164, 743.752. DOI: 10.1016/S0168-9452(03)00035-9. http://dx.doi.org/10.1016/S0168-9452(03)00035-910.1016/S0168-9452(03)00035-9Search in Google Scholar

[3] Brendel, O., Iannetta, P. P. M., & Stewart, D. (2000). A rapid and simple method to isolate pure α-cellulose. Phytochemical Analysis, 11, 7–10. DOI: 10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U. http://dx.doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-USearch in Google Scholar

[4] de Escalada Pla, M. F., Ponce, N. M., Stortz, C., Gerchenson, L. N., & Rojas, A. M. (2007). Composition and functional properties of enriched fiber products obtained from pumpkin (Cucurbita moschata Duchesne ex Poiret). LWT-Food Science and Technology, 40, 1176–1185. DOI: 10.1016/j.lwt.2006.07.013. http://dx.doi.org/10.1016/j.lwt.2006.08.00610.1016/j.lwt.2006.07.013Search in Google Scholar

[5] de Escalada Pla, M. F., Ponce, N. M., Wider, M. E., Stortz, C. A., Rojas, A. M., & Gerschenson, L. N. (2005). Chemical and biochemical changes of pumpkin (Cucurbita moschata Duch) tissue in relation to osmotic stress. Journal of the Science of Food and Agriculture, 85, 1852–1860. DOI: 10.1002/jsfa.2187. http://dx.doi.org/10.1002/jsfa.218710.1002/jsfa.2187Search in Google Scholar

[6] Ebringerová, A., Hromádková, Z., & Heinze, T. (2005). Hemicellulose. Advances in Polymer Science, 186, 1–67. DOI: 10.1007/b136812. http://dx.doi.org/10.1007/b13681610.1007/b136812Search in Google Scholar

[7] Ebringerová, A., Hromádková, Z., Hříbalová, V., Xu, C., Holmbom, B., Sundberg, A., & Willför, S. (2008a). Norway spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. International Journal of Biological Macromolecules, 42, 1–5. DOI: 10.1016/j.ijbiomac.2007.08.001. http://dx.doi.org/10.1016/j.ijbiomac.2007.08.00110.1016/j.ijbiomac.2007.08.001Search in Google Scholar

[8] Ebringerová, A., Hromádková, Z., Košťalová, Z., & Sasinková, V. (2008b). Chemical valorization of agricultural by-products: isolation and characterization of xylan-based antioxidants from almond shell biomass. Bioresources, 3, 60–70. Search in Google Scholar

[9] Essien, A. I., Ebana, R. U. B., & Udo, H. B. (1992). Chemical evaluation of the pod and of the fluted pumpkin (Telfairia occidentalis) fruit. Food Chemistry, 45, 175.178. DOI: 10.1016/0308-8146(92)90110-N. 10.1016/0308-8146(92)90110-NSearch in Google Scholar

[10] Esuoso, K., Lutz, H., Kutubuddin, M., & Bayer, E. (1998). Chemical composition and potential of some unterutilized tropical biomass. I: fluted pumpkin (Telfaria occidentalis). Food Chemistry, 61, 487–492. DOI: 10.1016/S0308-8146(97)00096-4. http://dx.doi.org/10.1016/S0308-8146(97)00096-410.1016/S0308-8146(97)00096-4Search in Google Scholar

[11] Evangeliou, V., Ptitchkina, N. M., & Morris, E. R. (2005). Solution viscosity and structural modification of pumpkin biopectin. Food Hydrocolloids, 19, 1032–1036. DOI: 10.1016/j.foodhyd.2005.01.004. http://dx.doi.org/10.1016/j.foodhyd.2005.01.00410.1016/j.foodhyd.2005.01.004Search in Google Scholar

[12] Fahim, A. A., Fattah, A-E., Agha, A. M., & Gad, T. Z. (1995). Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacological Research, 31, 73–79. DOI: 10.1016/1043-6618(95)80051-4. http://dx.doi.org/10.1016/1043-6618(95)80051-410.1016/1043-6618(95)80051-4Search in Google Scholar

[13] Fu, C., Tian, H., Cai, T., Liu, Y., & Li, Q. (2007). Some properties of an acidic protein-bound polysaccharide from the fruit of pumpkin. Food Chemistry, 100, 944–947. DOI: 10.1016/j.foodchem.2005.10.049. http://dx.doi.org/10.1016/j.foodchem.2005.10.04910.1016/j.foodchem.2005.10.049Search in Google Scholar

[14] Fu, C., Shi, H., & Li, Q. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition, 61, 70–77. DOI: 10.1007/s11130-006-0016-6. http://dx.doi.org/10.1007/s11130-006-0016-610.1007/s11130-006-0016-6Search in Google Scholar

[15] Hromádková, Z., & Ebringerová, A. (2003). Ultrasonic extraction of plant materials-investigation of hemicellulose release from buckwheat hulls. Ultrasonics Sonochemistry, 10, 127–133. DOI: 10.1016/S1350-4177(03)00094-4. http://dx.doi.org/10.1016/S1350-4177(03)00094-410.1016/S1350-4177(03)00094-4Search in Google Scholar

[16] Jun, H-I., Lee, C-H., Song, G-S., & Kim, Y-S. (2006). Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Science and Technology, 39, 554–561. DOI: 10.1016/j.lwt.2005.03.004. http://dx.doi.org/10.1016/j.lwt.2005.03.00410.1016/j.lwt.2005.03.004Search in Google Scholar

[17] Kačuráková, M., Capek, P., Sasinková, V., Wellner, N., & Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43, 195–203. DOI: 10.1016/S0144-8617(00)00151-X. http://dx.doi.org/10.1016/S0144-8617(00)00151-X10.1016/S0144-8617(00)00151-XSearch in Google Scholar

[18] Kačuráková, M., Wellner, N., Ebringerová, A., Hromádková, Z., Wilson, R. H., & Belton P. S. (1999). Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocolloids, 13, 35–41. DOI: 10.1016/S0268-005X(98)00067-8. http://dx.doi.org/10.1016/S0268-005X(98)00067-810.1016/S0268-005X(98)00067-8Search in Google Scholar

[19] Kurz, C., Carle, R., & Schieber, A. (2008). Characterisation of cell wall polysaccharide profiles of apricots (Prunus armeniaca L.), peaches (Prunus persica L.), and pumpkins (Cucurbita sp.) for the evaluation of fruit product authenticity. Food Chemistry, 106, 421–430. DOI: 10.1016/j.foodchem.2007.05.078. http://dx.doi.org/10.1016/j.foodchem.2007.05.07810.1016/j.foodchem.2007.05.078Search in Google Scholar

[20] Li, Q., Fu, C., Riu, Y., Hu, G., & Cai, T. (2005). Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats. Plant Foods for Human Nutrition, 60, 13–16. DOI: 10.1007/s11130-005-2536-x. http://dx.doi.org/10.1007/s11130-005-2536-x10.1007/s11130-005-2536-xSearch in Google Scholar PubMed

[21] Mc Cance, R. A., & Widdowson, E. M. (1991). The composition of foods (5th ed.). London: Ministry of Agriculture, Fisheries and Food. Search in Google Scholar

[22] Mort, A. J., Qiu, F., Nimtz, M., Stark, R., & Bell-Eunice, G. (2002). Structure of xylogalacturonan fragments from watermelon cell wall pectin. Implications for the action pattern of endopolygalacturonase on xylogalacturonan. In Proceedings of the 21st International Carbohydrate Symposium, July 7–12, 2002 (pp. 287–339). Cairns: University of Western Australia. Search in Google Scholar

[23] Murkovic, M., Mülleder, U., & Neunteufl, H. (2002). Carotenoid content in different varieties of pumpkin. Journal of Food Composition Analysis, 15, 633–638. DOI: 10.1006/jfca.2002.1052. http://dx.doi.org/10.1006/jfca.2002.105210.1006/jfca.2002.1052Search in Google Scholar

[24] Oosterveld, A., Beldmanm G., Schols, H. A., & Voragen, A. G. L. (2000). Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydrate Research, 328, 185–197. DOI: 10.1016/S0008-6215(00)00095-1. http://dx.doi.org/10.1016/S0008-6215(00)00095-110.1016/S0008-6215(00)00095-1Search in Google Scholar

[25] Ptitchkina, N. M., Danilova, A. I., Doxastakis, G., Kasapis, S., & Morris, E. R. (1994). Pumpkin pectin: gel formation at unusually low concentration. Carbohydrate Polymers, 23, 265–273. DOI: 10.1016/0144-8617(94)90189-9. http://dx.doi.org/10.1016/0144-8617(94)90189-910.1016/0144-8617(94)90189-9Search in Google Scholar

[26] Ptitchkina, N. M., Novokreschonova, L. V., Piskunova, G. V., & Morris, E. R. (1998). Large enhancements in loaf volume and organoleptic acceptability of wheat bread by small additions of pumpkin powder: possible role of acetylated pectin in stabilizing gas-cell structure. Food Hydrocolloids, 12, 333–337. DOI: 10.1016/S0268-005X(98)00024-1. http://dx.doi.org/10.1016/S0268-005X(98)00024-110.1016/S0268-005X(98)00024-1Search in Google Scholar

[27] Rao, P., & Pattabiraman, T. N. (1989). Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Analytical Biochemistry, 181, 18–22. DOI: 10.1016/0003-2697(89)90387-4. http://dx.doi.org/10.1016/0003-2697(89)90387-410.1016/0003-2697(89)90387-4Search in Google Scholar

[28] Ratnayake, R. M. S., Hurst, P. L., & Melton, L. D. (1999). Texture and the cell wall polysaccharides of buttercup squash ‘Delica’ (Cucurbita maxima). New Zealand Journal of Crop and Horticultural Science, 27, 133–143. 10.1080/01140671.1999.9514089Search in Google Scholar

[29] Shkodina, O. G., Zeltser, O. A., Selivanov, N. Y., & Ignatov, V. V. (1998). Enzymic extraction of pectin preparations from pumpkin. Food Hydrocolloids, 12, 313–316. DOI: 10.1016/S0268-005X(98)00020-4. http://dx.doi.org/10.1016/S0268-005X(98)00020-410.1016/S0268-005X(98)00020-4Search in Google Scholar

[30] Stuart, S. G., & Loy, J. B. (1983). Comparison of testa development in normal and hull-less seeded strains of Cucurbita pepo L. Botanical Gazette, 144, 491–500. http://dx.doi.org/10.1086/33740210.1086/337402Search in Google Scholar

[31] Teppner, H. (2000). Cucurbita pepo (Cucurbitaceae) — history, seed coat types, thin coated seeds and their genetics. Phyton-Annales Rei Botanicae, 40, 1–42. Search in Google Scholar

[32] Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. DOI: 10.1016/j.jfca.2006.01.003. http://dx.doi.org/10.1016/j.jfca.2006.01.00310.1016/j.jfca.2006.01.003Search in Google Scholar

[33] Voragen, A. G. J., Pilnik, W., Thibault, J.-F., Axelos, M. A. V., & Renard, C. M. G. C. (1995). Pectins. In A. M. Stephen (Ed.), Food polysaccharides and their applications (pp. 287–339). New York: Marcel Dekker. Search in Google Scholar

[34] Wang, D., Zhou, X., Li, L., Hou, Y., Sun, J., & Wang, J. (2008). A rapid quantitative method for polysaccharides in green tea and oolong tea. European Food Research and Technology, 226, 691–696. DOI: 10.1007/s00217-007-0578-z. http://dx.doi.org/10.1007/s00217-007-0578-z10.1007/s00217-007-0578-zSearch in Google Scholar

[35] Yuan, X., Wang, J., & Yao, H. (2005). Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chemistry, 90, 759–764. DOI: 10.1016/j.foodchem.2004.05.025. http://dx.doi.org/10.1016/j.foodchem.2004.05.02510.1016/j.foodchem.2004.05.025Search in Google Scholar

[36] Zraidi, A. M., Pachner, M., Lelley, T., & Obermayer, R. (2003). On the genetics and histology of the hull-less character of Styrian oil-pumpkin (Cucurbita pepo L.). Cucurbit Genetics Cooperative Report, 26, 57–61. Search in Google Scholar

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-009-0035-5/html
Scroll to top button