Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 64, Issue 2

Issues

Kinetics of nitric oxide oxidation

Kinga Skalska
  • Faculty of Process and Environmental Engineering, Technical University of Lodz, Wolczanska 213/215, 90-924, Lodz, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacek Miller
  • Faculty of Process and Environmental Engineering, Technical University of Lodz, Wolczanska 213/215, 90-924, Lodz, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanisław Ledakowicz
  • Faculty of Process and Environmental Engineering, Technical University of Lodz, Wolczanska 213/215, 90-924, Lodz, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-02-05 | DOI: https://doi.org/10.2478/s11696-009-0105-8

Abstract

Nitrogen oxides are nowadays a subject of global concern. Several types of nitrogen oxides exist in the environment: N2O, NO, NO2, N2O3, N2O4, N2O5. The abbreviation NOx usually relates to nitric oxide NO, nitrogen dioxide NO2, and nitrous oxide N2O. The first two are harmful pollutants for both environment and human health, whereas the third is one of the greenhouse gases. Implementation of stringent NOx emission regulations requires the development of new NOx removal technologies from exhaust gases. One of many proposals for NOx emission reduction is the application of an oxidizing agent which would transform NOx to higher nitrogen oxides with higher solubility in water. The main objective of the paper was to present the rate constant of nitric oxide oxidation, determined in our studies.

Keywords: air pollution; nitrogen oxides; kinetics; oxidation

  • [1] Awad, H. H., & Stanbury, D. M. (1993). Autooxidation of NO in aqueous solution. International Journal of Chemical Kinetics, 25, 375–381. DOI: 10.1002/kin.550250506. http://dx.doi.org/10.1002/kin.550250506CrossrefGoogle Scholar

  • [2] Brűggemann, T. C., & Keil, F. J. (2008). Theoretical investigation of the mechanism of the selective catalytic reduction of nitric oxide with ammonia on H-form zeolites. The Journal of Physical Chemistry C, 112, 17378–17387. DOI: 10.1021/jp806674d. http://dx.doi.org/10.1021/jp806674dCrossrefGoogle Scholar

  • [3] Javed, M. T., Irfan, N., & Gibbs, B. M. (2007). Control of combustion-generated nitrogen oxides by selective noncatalytic reduction. Journal of Environmental Management, 83, 251–289. DOI: 10.1016/j.jenvman.2006.03.006. http://dx.doi.org/10.1016/j.jenvman.2006.03.006Web of ScienceCrossrefGoogle Scholar

  • [4] Mok, Y. S., & Lee, H.-J. (2006). Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Processing Technology, 87, 591–597. DOI: 10.1016/j.fuproc.2005.10.007. http://dx.doi.org/10.1016/j.fuproc.2005.10.007CrossrefGoogle Scholar

  • [5] Mok, Y. S., & Yoon, E. Y. (2006). Effect of ozone injection on catalytic reduction of nitrogen oxides. Ozone: Science & Engineering, 28, 105–110. DOI: 10.1080/01919510600559278. http://dx.doi.org/10.1080/01919510600559278CrossrefGoogle Scholar

  • [6] Muzio, L. J., & Quartucy, G. C. (1997). Implementing NOx control: Research to application. Progress in Energy and Combustion Science, 23, 233–266. DOI: 10.1016/S0360-1285(97)00002-6. http://dx.doi.org/10.1016/S0360-1285(97)00002-6CrossrefGoogle Scholar

  • [7] Skalska, K., Miller, J. S., & Ledakowicz, S. (2009). NO removal from flue gases by ozonation. Environment Protection Engineering, 35(3), 207–214. Google Scholar

  • [8] Tsukahara, H., Ishida, T., & Mayumi, M. (1999). Gas-phase oxidation of nitric oxide: Chemical kinetics and rate constant. Nitric Oxide, 3, 191–198. DOI: 10.1006/niox.1999.0232. http://dx.doi.org/10.1006/niox.1999.0232CrossrefGoogle Scholar

  • [9] Van Durme, J., Dewulf, J., Leys, C., & Van Langenhove, H. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 78, 324–333. DOI: 10.1016/j.apcatb.2007.09.035. http://dx.doi.org/10.1016/j.apcatb.2007.09.035Web of ScienceCrossrefGoogle Scholar

  • [10] Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., & Cen, K. (2007). Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Processing Technology, 88, 817–823. DOI: 10.1016/j.fuproc.2007.04.001. http://dx.doi.org/10.1016/j.fuproc.2007.04.001Web of ScienceCrossrefGoogle Scholar

  • [11] Wink, D. A., & Ford, P. C. (1995). Nitric oxide reactions important to biological systems: A survey of some kinetics investigations. Methods, 7, 14–20. DOI: 10.1006/meth.1995.1003. http://dx.doi.org/10.1006/meth.1995.1003CrossrefGoogle Scholar

  • [12] Woodrow, P. (1997). Nitric oxide: some nursing implications. Intensive and Critical Care Nursing, 13, 87–92. DOI: 10.1016/S0964-3397(97)80186-3. http://dx.doi.org/10.1016/S0964-3397(97)80186-3CrossrefGoogle Scholar

  • [13] Wright, J. (2003). Environmental Chemistry (pp. 240–265). London, New York: Routledge, Taylor and Francis Group. Google Scholar

About the article

Published Online: 2010-02-05

Published in Print: 2010-04-01


Citation Information: Chemical Papers, Volume 64, Issue 2, Pages 269–272, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-009-0105-8.

Export Citation

© 2009 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in