Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 64, Issue 3

Issues

A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations

Robert Skibiński / Łukasz Komsta / Marta Grech-Baran / Anna Gumieniczek
Published Online: 2010-03-31 | DOI: https://doi.org/10.2478/s11696-009-0093-8

Abstract

The LBOZ criterion is an interesting approach for quantifying selectivity during spectrophotometric analysis by measuring the relative uncertainty increase caused by spectral overlapping. Unfortunately, no reference values for pharmaceuticals analysis in the UV region exist. The current paper presents an estimation of the LBOZ distribution as a random variable for binary and ternary drug mixtures. The estimation was done on a representative group of 170 diverse drug-like compounds. Results of the estimation were fitted to the beta and the Johnson distributions. The obtained parameters can be used to examine the “significance” of the spectral overlap by finding the p-value, interpreted as a chance to obtain higher uncertainty increase among the drugs.

Keywords: LBOZ; selectivity; uncertainty; spectrophotometry

  • [1] Bergmann, G., von Oepen, B., & Zinn, P. (1987). Improvement in the definitions of sensitivity and selectivity. Analytical Chemistry, 59, 2522–2526. DOI: 10.1021/ac00147a017. http://dx.doi.org/10.1021/ac00147a017CrossrefGoogle Scholar

  • [2] Dinç, E., Kaya, S., Doganay, T., & Baleanu, D. (2007). Continuous wavelet and derivative transforms for the simultaneous quantitative analysis and dissolution test of levodopabenserazide tablets. Journal of Pharmaceutical and Biomedical Analysis, 44, 991–995 DOI: 10.1016/j.jpba.2007.03.027. http://dx.doi.org/10.1016/j.jpba.2007.03.027CrossrefWeb of ScienceGoogle Scholar

  • [3] Faber, N. M, Ferre, J., Boque, R., & Kalivas, J. H. (2003). Quantifying selectivity in spectrophotometric multicomponent analysis. Trends in Analytical Chemistry, 22, 352–361. DOI: 10.1016/S0165-9936(03)00604-6. http://dx.doi.org/10.1016/S0165-9936(03)00604-6CrossrefGoogle Scholar

  • [4] Hahn, G. J., & Shapiro, S. S. (1967). Statistical models in engineering. New York, NY, USA: Wiley. Google Scholar

  • [5] International Conference on Harmonization (1994). Validation of analytical methods. Definition and terminology (ICH Q2A). Geneve, Switzerland: ICH. Google Scholar

  • [6] International Conference on Harmonization (1996). Validation of analytical methods. Methodology (ICH Q2B). Geneve, Switzerland: ICH. Google Scholar

  • [7] Johnson, N. (1949). Bivariate distributions based on simple translation system. Biometrika, 36, 297–304. DOI: 10.1093/biomet/36.3-4.297. CrossrefGoogle Scholar

  • [8] Komsta, Ł., Skibiński, R., Paryło, M., & Dudek, K. (2008). The basis function regression in pharmaceutical analysis: Theory and example of application. Journal of Pharmaceutical and Biomedical Analysis, 47, 659–669. DOI: 10.1016/j.jpba.2008.03.016. http://dx.doi.org/10.1016/j.jpba.2008.03.016CrossrefGoogle Scholar

  • [9] Lorber, A. (1986). Error propagation and figures of merit for quantification by solving matrix equations. Analytical Chemistry, 58, 1167–1172. DOI: 10.1021/ac00297a042. http://dx.doi.org/10.1021/ac00297a042CrossrefGoogle Scholar

  • [10] Lorber, A., Harel, A., Goldbart, Z., & Brenner, I. B. (1987). Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry. Analytical Chemistry, 59, 1260–1266. DOI: 10.1021/ac00136a004. http://dx.doi.org/10.1021/ac00136a004CrossrefGoogle Scholar

  • [11] Otto, M., & Wegscheider, W. (1986). Selectivity in multicomponent analysis. Analytica Chimica Acta, 180, 445–456. DOI: 10.1016/0003-2670(86)80024-1. http://dx.doi.org/10.1016/0003-2670(86)80024-1CrossrefGoogle Scholar

  • [12] R Development Core Team (2005). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Google Scholar

  • [13] Wheeler, R. E. (1980). Quantile estimators of Johnson curve parameters. Biometrika, 67, 725–728. DOI: 10.1093/biomet/67.3.725. http://dx.doi.org/10.1093/biomet/67.3.725CrossrefGoogle Scholar

About the article

Published Online: 2010-03-31

Published in Print: 2010-06-01


Citation Information: Chemical Papers, Volume 64, Issue 3, Pages 273–277, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-009-0093-8.

Export Citation

© 2009 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in