Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 31, 2010

A simple turbidimetric flow injection system for saccharin determination in sweetener products

  • Camila Mendes EMAIL logo , Emiliane Laignier , Maisa Brigagão , Pedro Luccas and César Tarley
From the journal Chemical Papers

Abstract

A new method for saccharin determination in liquid sweetener products was developed. The method is based on the precipitation reaction of Ag(I) ions with saccharin in aqueous medium (pH 3.0), using a flow injection analysis system with merging zones, the suspension was stabilized with 5 g L−1 Triton X-100. All experimental parameters influencing the flow injection system were optimized by means of chemometric approaches. The linear analytical curve was built from 2.4 g L−1 up to 9.64 g L−1 (r = 0.9968) with a quantification limit of 2.40 g L−1. The precision assessed as relative standard deviation (n = 10) was found to be 1.75 % for the saccharin concentration of 7.20 g L−1. Based on interference studies performed with the substances commonly found in liquid sweeteners, such as sodium cyclamate, methylparaben, sodium aspartame, and benzoic and citric acids, at the analyte to interferent mole ratio of up to 1: 10, no interference with the saccharin determination was observed. The presence of chloride ions interferes with the method, but a preceding liquid-liquid saccharin extraction with ethyl acetate was successfully employed to overcome this drawback. Accuracy of the method in sweetener products was evaluated by a comparison with the HPLC method.

[1] Amer, M. M., Haroun, I. A., Walash, M. I., & Ashour, F. M. (1978). The determination of mixtures of some artificial sweeteners. Pharmazie, 33, 435–438. Search in Google Scholar

[2] Armenta, S., Garrigues, S., & de la Guardia, M. (2004). Sweeteners determination in table top formulations using FT-Raman spectrometry and chemometric analysis. Analytica Chimica Acta, 521, 149–155. DOI: 10.1016/j.aca.2004.05.077. http://dx.doi.org/10.1016/j.aca.2004.05.07710.1016/j.aca.2004.05.077Search in Google Scholar

[3] Assumpção, M. H. M. T., Medeiros, R. A., Madi, A., & Fatibello-Filho, O. (2008). Desenvolvimento de um procedimento biamperométrico para determinação de sacarina em produtos dietéticos. Química Nova, 31, 1743–1746. DOI:10.1590/S0100-40422008000700028. http://dx.doi.org/10.1590/S0100-4042200800070002810.1590/S0100-40422008000700028Search in Google Scholar

[4] Baran, E. J., & Yilmaz, V. T. (2006). Metal complexes of saccharin. Coordination Chemistry Review, 250, 1980–1999. DOI:10.1016/j.ccr.2005.11.021. http://dx.doi.org/10.1016/j.ccr.2005.11.02110.1016/j.ccr.2005.11.021Search in Google Scholar

[5] Canaes, L. S., & Fatibello-Filho, O. (2006). Determinação turbidimétrica de metilbrometo de homatropina em formulaçës farmacęuticas empregando um sistema de análise por injeção em fluxo. Química Nova, 29, 1237–1240. DOI:10.1590/S0100-40422006000600017. http://dx.doi.org/10.1590/S0100-4042200600060001710.1590/S0100-40422006000600017Search in Google Scholar

[6] Capitán-Vallvey, L. F., Valencia, M. C., & Arana Nicolás, E. (2004). Flow-through spectrophotometric sensor for the determination of saccharin in low-calorie products. Food Additives and Contaminants, 21, 32–41. DOI: 10.1080/0265203032000158283 http://dx.doi.org/10.1080/026520303200015828310.1080/0265203032000158283Search in Google Scholar

[7] Cavicchioli, M., Varanda, L. C., Massabni, A. C., & Melnikov, P. (2005). Silver nanoparticles synthesized by thermal reduction of a silver(I)-aspartame complex in inert atmosphere. Materials Letters, 59, 3585–3589. DOI:10.1016/j.matlet.2005.07.001. http://dx.doi.org/10.1016/j.matlet.2005.07.00110.1016/j.matlet.2005.07.001Search in Google Scholar

[8] Chen, Q.-C., Mou, S.-F., Liu, K.-N., Yang, Z.-Y., & Ni, Z.-M. (1997). Separation and determination of four artificial sweeteners and citric acid by high-performance anion-exchange chromatography. Journal of Chromatography A, 771, 135–143. DOI: 10.1016/S0021-9673(97)00067-8. http://dx.doi.org/10.1016/S0021-9673(97)00067-810.1016/S0021-9673(97)00067-8Search in Google Scholar

[9] Fatibello-Filho, O., Nóbrega, J. A., & Guaritá-Santos, A. J. M. (1994). Flow-injection potentiometric determination of saccharin in dietary products with relocation on filtration unit. Talanta, 41, 731–734. DOI: 10.1016/0039-9140(93)E0018-9. http://dx.doi.org/10.1016/0039-9140(93)E0018-910.1016/0039-9140(93)E0018-9Search in Google Scholar

[10] Filho, J. C., Santini, A. O., Nasser, A. L. M., Pezza, H. R., de Oliveira, J. E., Melios, C. B., & Pezza, L. (2003). Potentiometric determination of saccharin in commercial artificial sweeteners using a silver electrode. Food Chemistry, 83, 297–301. DOI: 10.1016/S0308-8146(03)00123-7. http://dx.doi.org/10.1016/S0308-8146(03)00123-710.1016/S0308-8146(03)00123-7Search in Google Scholar

[11] García-Jiménez, J. F., Valencia, M. C., & Capitán-Vallvey, L. F. (2007). Simultaneous determination of antioxidants, preservatives and sweetener additives in food and cosmetics by flow injection analysis coupled to a monolithic column. Analytica Chimica Acta, 94, 226–233. DOI: 10.1016/j.aca.2007.05.040. http://dx.doi.org/10.1016/j.aca.2007.05.04010.1016/j.aca.2007.05.040Search in Google Scholar PubMed

[12] Hannisdal, A., & Schroeder, K. H. (1993). Differential pulse polarographic determination of the artificial sweeteners acesulfame-K and saccharin in beverages. Electroanalysis, 5, 183–185. DOI: 10.1002/elan.1140050215. http://dx.doi.org/10.1002/elan.114005021510.1002/elan.1140050215Search in Google Scholar

[13] Ivaldi, J. C., & Tyson, J. F. (1996). Real-time internal standardization with an axially viewed inductively coupled plasma for optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 51, 1443–1450. DOI: 10.1016/0584-8547(96)01547-9. http://dx.doi.org/10.1016/0584-8547(96)01547-910.1016/0584-8547(96)01547-9Search in Google Scholar

[14] Llamas, N. E., Di Nezio, M. S., Palomeque, M. E., & Fernández Band, B. S. (2005). Automated turbidimetric determination of cyclamate in low calorie soft drinks and sweeteners without pre-treatment. Analytica Chimica Acta, 539, 301–304. DOI:10.1016/j.aca.2005.03.044. http://dx.doi.org/10.1016/j.aca.2005.03.04410.1016/j.aca.2005.03.044Search in Google Scholar

[15] Marcolino, L. H., Jr, Bonifácio, V. G., Fatibello-Filho, O., & Teixeira, M. F. S. (2005). Determinação turbidimétrica de dipirona em fluxo utilizando um reator contendo cloreto de prata imobilizado em resina poliéster. Química Nova, 28, 783–787. DOI: 10.1590/S0100-40422005000500009. 10.1590/S0100-40422005000500009Search in Google Scholar

[16] Momozono, Y., Eto, S., & Isshiki, K. (1990). Gas-chromatographic determination of saccharin in foods by using trimethylsilyldiazomethane. Eisei Kagaku, 36, 56–61. 10.1248/jhs1956.36.56Search in Google Scholar

[17] Parikh, P. M., & Mukherji, S. P. (1960). The determination of saccharin. Analyst, 85, 25–26. DOI: 10.1039/AN9608500025. http://dx.doi.org/10.1039/an960850002510.1039/an9608500025Search in Google Scholar

[18] Suarez, W. T., Vieira, H. J., & Fatibello-Filho, O. (2007). Flow injection turbidimetric determination of acetylcysteine in pharmaceutical formulations using silver nitrate as precipitant reagent. Journal of the Brazilian Chemical Society, 18, 1028–1033. DOI: 10.1590/S0103-50532007000500023. 10.1590/S0103-50532007000500023Search in Google Scholar

[19] Tarley, C. R. T., Barbosa, A. F., Segatelli, M. G., Figueiredo, E. C., & Luccas, P. O. (2006). Highly improved sensitivity of TS-FF-AAS for Cd(II) determination at ng L−1 levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes. Journal of Analytical Atomic Spectrometry, 21, 1305–1313. DOI:10.1039/b606997e. http://dx.doi.org/10.1039/b606997e10.1039/B606997ESearch in Google Scholar

[20] Tarley, C. R. T., dos Santos, W. N. L., dos Santos, C. M., Arruda, M. A. Z., & Ferreira, S. L. C. (2004). Factorial design and Doehlert matrix in optimisation of flow system for pre concentration of copper on polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol. Analytical Letters, 37, 1437–1455. DOI: 10.1081/AL-120035909. http://dx.doi.org/10.1081/AL-12003590910.1081/AL-120035909Search in Google Scholar

[21] U.S. Department of Health and Human Services (2001). Guidance for industry. Bioanalytical method validation. Retrieved August 24, 2009, from http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf Search in Google Scholar

[22] Warner, C., Modderman, J., Fazio, T., Beroza, M., Schwartzmann, G., & Fominaya, K. (Eds.) (1993). Food additives analytical manual—A collection of analytical methods for selected food additives (5th ed.). Arlington, VA, USA: AOAC International. Search in Google Scholar

[23] Weinert, P. L., Pezza, H. R., de Oliveira, J. E., & Pezza, L. (2004). Simplified spectrophotometric method for routine analysis of saccharin in commercial noncaloric sweeteners. Journal of Agriculture and Food Chemistry, 52, 7788–7792. DOI: 10.1021/jf0402781. http://dx.doi.org/10.1021/jf040278110.1021/jf0402781Search in Google Scholar PubMed

[24] Yano, M., Shiba, S., Yokoyama, Y., Tagawa, Y., Masui, T., Ozawa, T., Warabi, Y., Saga, J., Hyodo, N., Matsumoto, T., & Azuma, N. (1992). Determination of saccharin in foods by HPLC. Japanese Journal of Toxicology and Environmental Health, 38, 196–201. Search in Google Scholar

[25] Yebra, M. C., Gallego, M., & Valcárcel, M (1995). Precipitation flow-injection method for the determination of saccharin in mixtures of sweeteners. Analytica Chimica Acta, 308, 275–280. DOI: 10.1016/0003-2670(94)00259-O. http://dx.doi.org/10.1016/0003-2670(94)00259-O10.1016/0003-2670(94)00259-OSearch in Google Scholar

Published Online: 2010-3-31
Published in Print: 2010-6-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0009-7/html
Scroll to top button