Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

See all formats and pricing
More options …
Volume 64, Issue 5


Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides

Zdenka Hromádková
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Hirsch
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Ebringerová
  • Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-14 | DOI: https://doi.org/10.2478/s11696-010-0054-2


Utilization of biomass from forest or agricultural crops for the production of energy or chemical products provides environmental advantages. Leaves of the knotweeds Fallopia japonica, Fallopia sachalinensis, and Fallopia × bohemica are rich sources of phenolics and polysaccharides. In view of their potential utilization before the disposal of these invasive plants, their gross composition was investigated. The content of extractives was the highest in F. sachalinensis. Extractive-free leaves of all species showed similar chemical composition. The content of ash, protein, lignin, uronic acids, and α-cellulose in the leaves of F. sachalinensis, F. × bohemica, and F. japonica was 63.3 %, 64.1 %, and 63.4 %, respectively. The rest comprised hemicelluloses and neutral carbohydrate components of pectic polysaccharides. Sequential extraction of F. sachalinensis with water, EDTA, DMSO, 1 % NaOH, and 5 % NaOH yielded fractions accounting together for 27.6 % of polysaccharides. Pectic polysaccharides predominated in the first three fractions, whereas the hemicellulose components — xylan and xyloglucan, prevailed in the two alkaline fractions. The polysaccharides displayed significant radical scavenging activities in the 1,1-diphenyl-2-picrylhydrazyl free radical assay thus indicating their potential application as novel natural antioxidants.

Keywords: Fallopia species; leaves; composition; non-cellulosic polysaccharides; phenolics; flavonoids; radical scavenging activity

  • [1] Ahmed, A. R., & Labavitch, J. M. (1978). A simplified method for accurate determination of cell wall uronide content. Journal of Food Biochemistry, 1, 361–365. DOI: 10.1111/j.1745-4514.1978.tb00193.x. http://dx.doi.org/10.1111/j.1745-4514.1978.tb00193.xCrossrefGoogle Scholar

  • [2] Angone, S. A., Bardor, M., Nguema-Ona, E., Rihouey, C., Ishii, T., Lerouge, P., & Driouich, A. (2009). Structural characterization of cell wall polysaccharides from two plant species endemic to central Africa, Fleurya aestuans and Phragmenthera capitata. Carbohydrate Polymers, 75, 104–109. DOI: 10.1016/j.carbpol.2008.07.003. http://dx.doi.org/10.1016/j.carbpol.2008.07.003CrossrefGoogle Scholar

  • [3] Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191–203. DOI: 10.1016/j.foodchem.2005.07.042. http://dx.doi.org/10.1016/j.foodchem.2005.07.042CrossrefGoogle Scholar

  • [4] Bao, X., Wang, Z., Fang, J., & Li, X. (2002). Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of Cuscuta chinensis. Planta Medica, 68, 237–243. DOI: 10.1055/s-2002-23133. http://dx.doi.org/10.1055/s-2002-23133CrossrefGoogle Scholar

  • [5] Beerling, D. J., Bailey, J. P., & Conolly, A. P. (1994). Fallopia japonica (Houtt.) Ronse Decraene. Journal of Ecology, 82, 959–979. http://dx.doi.org/10.2307/2261459Google Scholar

  • [6] Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54, 484–489. DOI: 10.1016/0003-2697(73)90377-1. http://dx.doi.org/10.1016/0003-2697(73)90377-1CrossrefGoogle Scholar

  • [7] Brendel, O., Iannetta, P. P. M., & Stewart, D. (2000). A rapid and simple method to isolate pure α-cellulose. Phytochemical Analysis, 11, 7–10. DOI: 10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U. http://dx.doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-UCrossrefGoogle Scholar

  • [8] Browning, B. L. (1967). Methods of wood chemistry (Vol. 2). New York, NY, USA: Wiley. Google Scholar

  • [9] Busato, A. P., Vargas-Rechia, C. G., & Reicher, F. (2001). Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry, 58, 525–531. DOI: 10.1016/S0031-9422(01)00217-5. http://dx.doi.org/10.1016/S0031-9422(01)00217-5CrossrefGoogle Scholar

  • [10] Capek, P., Machová, E., & Turjan, J. (2009). Scavenging and antioxidant activities of immunomodulating polysaccharides isolated from Salvia officinalis L. International Journal of Biological Macromolecules, 4, 75–80. DOI: 10.1016/j.ijbiomac.2008.10.007. http://dx.doi.org/10.1016/j.ijbiomac.2008.10.007CrossrefGoogle Scholar

  • [11] Chung, K.-T., Wong, T. Y., Wei, C.-Y., Huang, Y.-W., & Lin, Y. (1998). Tannins and human health: A review. Critical Reviews in Food Science and Nutrition, 38, 421–464. DOI: 10.1080/10408699891274273. http://dx.doi.org/10.1080/10408699891274273CrossrefGoogle Scholar

  • [12] Ebringerová, A., Hromádková, Z., Hříbalová, V., Xu, C., Holmbom, B., Sundberg, A., & Willför, S. (2008a). Norway spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. International Journal of Biological Macromolecules, 42, 1–5. DOI: 10.1016/j.ijbiomac.2007.08.001. http://dx.doi.org/10.1016/j.ijbiomac.2007.08.001CrossrefWeb of ScienceGoogle Scholar

  • [13] Ebringerová, A., Hromádková, Z., Košťálová, Z., & Sasinková, V. (2008b). Chemical valorization of agricultural by-products: isolation and characterization of xylan-based antioxidants from almond shell biomass. Bioresources, 3, 60–70. Google Scholar

  • [14] Faix, O. (1991). Classification of lignin from different botanical origins by FT-IR spectroscopy. Holzforschung, 45(Suppl.), 21–27. DOI: 10.1515/hfsg.1991.45.s1.21. http://dx.doi.org/10.1515/hfsg.1991.45.s1.21CrossrefGoogle Scholar

  • [15] Ferreira, D., Barros, A., Coimbra, M. A., & Delgadillo, I. (2001). Use of FT-IR spectroscopy to follow the effect of processing in cell wall polysaccharide extracts of a sun-dried pear. Carbohydrate Polymers, 45, 175–182. DOI: 10.1016/S0144-8617(00)00320-9. http://dx.doi.org/10.1016/S0144-8617(00)00320-9CrossrefGoogle Scholar

  • [16] Gerber, E., Krebs, C., Murrell, C., Moretti, M., Rocklin, R., & Schaffner, U. (2008). Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biological Conservation, 141, 646–654. DOI: 10.1016/j.biocon.2007.12.009. http://dx.doi.org/10.1016/j.biocon.2007.12.009CrossrefWeb of ScienceGoogle Scholar

  • [17] Hromádková, Z., & Ebringerová, A. (2003). Ultrasonic extraction of plant materials—investigation of hemicellulose release from buckwheat hulls. Ultrasonics Sonochemistry, 10, 127–133. DOI: 10.1016/S1350-4177(03)00094-4. http://dx.doi.org/10.1016/S1350-4177(03)00094-4CrossrefGoogle Scholar

  • [18] Hromádková, Z., Košťálová, Z., & Ebringerová, A. (2008). Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15, 1062–1068. DOI: 10.1016/j.ultsonch.2008.04.008. http://dx.doi.org/10.1016/j.ultsonch.2008.04.008Web of ScienceCrossrefGoogle Scholar

  • [19] Inoue, M., Nishimura, H., Li, H. H., & Mizutani, J. (1992). Allelochemicals from Polygonum sachalinense Fr. Schm. (Polygonaceae). Journal of Chemical Ecology, 18, 1833–1840. DOI: 10.1007/BF02751107. http://dx.doi.org/10.1007/BF02751107CrossrefGoogle Scholar

  • [20] Jia, Z., Tang, M., & Wu, J. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559. DOI: 10.1016/S0308-8146(98)00102-2. http://dx.doi.org/10.1016/S0308-8146(98)00102-2CrossrefGoogle Scholar

  • [21] Kačuráková, M., Capek, P., Sasinková, V., Wellner, N., & Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43, 195–203. DOI: 10.1016/S01448617(00)00151X. http://dx.doi.org/10.1016/S0144-8617(00)00151-XCrossrefGoogle Scholar

  • [22] Kačuráková, M., Wellner, N., Ebringerová, A., Hromádková, Z., Wilson, R. H., & Belton, P. S. (1999). Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocolloids, 13, 35–41. DOI: 10.1016/S0268-005X(98)00067-8. http://dx.doi.org/10.1016/S0268-005X(98)00067-8CrossrefGoogle Scholar

  • [23] Konstantinidou-Doltsinis, S. & Schmitt, A. (1998). Impact of treatment with plant extracts from Reynoutria sachalinensis (F. Schmidt) Nakai on intensity of powdery mildew severity and yield in cucumber under high disease pressure. Crop Protection, 17, 649–656. DOI: 10.1016/S0261-2194(98)00066-0. http://dx.doi.org/10.1016/S0261-2194(98)00066-0CrossrefGoogle Scholar

  • [24] Košťáková, Z., Hromádková, Z., & Ebringerová, A. (2009). Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca). Chemical Papers, 63, 406–413. DOI: 10.2478/s11696-009-0035-5. http://dx.doi.org/10.2478/s11696-009-0035-5CrossrefWeb of ScienceGoogle Scholar

  • [25] Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27, 969–978. DOI: 10.1016/0031-9422(88)80254-1. http://dx.doi.org/10.1016/0031-9422(88)80254-1CrossrefGoogle Scholar

  • [26] Mazumder, S., Morvan, C., Thakur, S., & Ray, B. (2004). Cell wall polysaccharides from Chalkumra (Benincasa hispida) fruit. Part I. Isolation and characterization of pectins. Journal of Agricultural and Food Chemistry, 52, 3556–3562. DOI: 10.1021/jf0343130. http://dx.doi.org/10.1021/jf0343130CrossrefGoogle Scholar

  • [27] Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M., & Oksman-Caldentey, K.-M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81, 485–493. DOI: 10.1016/S0308-8146(02)00476-4. http://dx.doi.org/10.1016/S0308-8146(02)00476-4CrossrefGoogle Scholar

  • [28] Ng, T. B., He, J. S., Niu, S.M., Zhao, L., Pi, Z. F., Shao, W., & Liu, F. (2004). A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers. Journal of Pharmacy and Pharmacology, 56, 537–545. DOI: 10.1211/0022357022944. http://dx.doi.org/10.1211/0022357022944CrossrefGoogle Scholar

  • [29] Rao, R. S. P., & Muralikrishna, G. (2006). Water soluble feruloyl arabinoxylans from rice and ragi: Changes upon malting and their consequence on antioxidant activity. Phytochemistry, 67, 91–99. DOI: 10.1016/j.phytochem.2005.09.036. http://dx.doi.org/10.1016/j.phytochem.2005.09.036CrossrefGoogle Scholar

  • [30] Ray, B., Loutelier-Bourhis, C., Lange, C., Condamine, E., Driouich, A., & Lerouge, P. (2004). Structural investigation of hemicellulosic polysaccharides from Argania spinosa: characterisation of a novel xyloglucan motif. Carbohydrate Research, 339, 201–208. DOI: 10.1016/j.carres.2003.10.011. http://dx.doi.org/10.1016/j.carres.2003.10.011CrossrefGoogle Scholar

  • [31] Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57, 929–967. DOI: 10.1016/S0031-9422(01)00113-3. http://dx.doi.org/10.1016/S0031-9422(01)00113-3CrossrefGoogle Scholar

  • [32] Proteggente, A. R., Rice-Evans, C. A., Wiseman, S., & van de Put, F. H. M. M. (2003). The relationship between the phenolic composition and the antioxidant activity of fruits and vegetables. In C. A. Rice-Evans, & L. Packer (Eds.), Flavonoids in health and disease (2nd ed., pp. 71–95). New York, NY, USA: Marcel Dekker. Google Scholar

  • [33] Song, J.-H., Yang, T.-C., Chang, K.-W, Han, S.-K., Yi, H.-K., & Jeon, J.-G. (2007). In vitro effects of a fraction separated from Polygonum cuspidatum root on the viability, in suspension and biofilms, and biofilm formation of mutans streptococci. Journal of Ethnopharmacology, 112, 419–425. DOI: 10.1016/j.jep.2007.03.036. http://dx.doi.org/10.1016/j.jep.2007.03.036CrossrefWeb of ScienceGoogle Scholar

  • [34] Stewart, D. (1996). Fourier-transform infrared microspectroscopy of plant tissues. Applied Spectroscopy, 50, 357–365. DOI: 10.1366/0003702963906384. http://dx.doi.org/10.1366/0003702963906384CrossrefGoogle Scholar

  • [35] Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. DOI: 10.1016/j.jfca.2006.01.003. http://dx.doi.org/10.1016/j.jfca.2006.01.003CrossrefGoogle Scholar

  • [36] Vastano, B.C., Chen, Y., Zhu, N., Ho, C.-T., Zhou, Z., & Rosen, R. T. (2000). Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum. Journal of Agricultural and Food Chemistry, 48, 253–256. DOI: 10.1021/jf9909196. http://dx.doi.org/10.1021/jf9909196CrossrefGoogle Scholar

  • [37] Vogel, J. (2008). Unique aspects of the grass cell wall. Current Opinion in Plant Biology, 11, 301–307. DOI: 10.1016/j.pbi.2008.03.002. http://dx.doi.org/10.1016/j.pbi.2008.03.002CrossrefWeb of ScienceGoogle Scholar

  • [38] Vrchotová, N., Šerá, B., & Tříska, J. (2007). The stilbene and catechin content of the spring sprout of Reynoutria species. Acta Chromatographica, 2007, 21–28. Google Scholar

  • [39] Vrchotová, N., Šerá, B., Tříska, J., Dadáková, E., & Kužel, S. (2004). Phenolic compounds in the leaves of Reynoutria Houtt. genus. In A. Hoikkala, O. Soidinsalo, & K. I. Wähälä (Eds.), Proceedings of the 22nd International Conference on Polyphenols: Polyphenols Communications, 24–28 August 2004 (pp. 811–812). Helsinki, Finland. Google Scholar

  • [40] Weidner, S., Amarowicz, R., Karamać, M., & Dąbrowski, G. (1999). Phenolic acids in caryopses of two cultivars of wheat, rye and triticale that display different resistance to preharvest sprouting. European Food Research and Technology, 210, 109–113. DOI: 10.1007/s002170050544. http://dx.doi.org/10.1007/s002170050544CrossrefGoogle Scholar

  • [41] Wong, C.-C., Li, H.-B., Cheng, K.-W, & Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 97, 705–711. DOI: 10.1016/j.foodchem.2005.05.049. http://dx.doi.org/10.1016/j.foodchem.2005.05.049CrossrefGoogle Scholar

  • [42] Xiao, K., Xuan, L., Xu, Y., & Bai, D. (2000). Stilbene glycoside sulfates from Polygonum cuspidatum. Journal of Natural Products, 63, 1373–1376. DOI: 10.1021/np000086+. http://dx.doi.org/10.1021/np000086+CrossrefGoogle Scholar

  • [43] Yang, J., Zhou, D., & Liang, Z. (2009). A new polysaccharide from leaf of Ginkgo biloba L. Fitoterapia, 80, 43–47. DOI: 10.1016/j.fitote.2008.09.012. http://dx.doi.org/10.1016/j.fitote.2008.09.012Web of ScienceCrossrefGoogle Scholar

  • [44] Yu, Z. H., Jin, C., Xin, M., & He, J. (2009). Effect of Aloe vera polysaccharides on immunity and antioxidant activities in oral ulcer animal models. Carbohydrate Polymers, 75, 307–311. DOI: 10.1016/j.carbpol.2008.07.029. http://dx.doi.org/10.1016/j.carbpol.2008.07.029CrossrefGoogle Scholar

  • [45] Yuan, J.-F., Zhang, Z.-Q., Fan, Z.-C., & Yang, J.-X. (2008). Antioxidant effects and cytotoxicity of three purified polysaccharides from Ligusticum chuanxiong Hort. Carbohydrate Polymers, 74, 822–827. DOI: 10.1016/j.carbpol.2008.04.040. http://dx.doi.org/10.1016/j.carbpol.2008.04.040Web of ScienceCrossrefGoogle Scholar

  • [46] Zhang, X., Thuong, P. T., Jin, W., Su, N. D., Sok, D. E., Bae, K., & Kang, S. S. (2005). Antioxidant activity of anthraquinones and flavonoids from flower of Reynoutria sachalinensis. Archives of Pharmaceutical Research, 28, 22–27. DOI: 10.1007/BF02975130. http://dx.doi.org/10.1007/BF02975130CrossrefGoogle Scholar

  • [47] Zhou, Z., Miwa, M., Nara, K., Wu, B., Nakaya, H., Lian, C., Miyashita, N., Oishi, R., Maruta, E., & Hogetsu, T. (2003). Patch establishment and development of a clonal plant, Polygonum cuspidatum, on Mount Fuji. Molecular Ecology, 12, 1361–1373. DOI: 10.1046/j.1365-294X.2003.01816.x. http://dx.doi.org/10.1046/j.1365-294X.2003.01816.xCrossrefGoogle Scholar

About the article

Published Online: 2010-08-14

Published in Print: 2010-10-01

Citation Information: Chemical Papers, Volume 64, Issue 5, Pages 663–672, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-010-0054-2.

Export Citation

© 2010 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in