Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

See all formats and pricing
More options …
Volume 65, Issue 3


Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite

Mohsen Padervand / Mahboubeh Tasviri / Mohammad Gholami
Published Online: 2011-03-16 | DOI: https://doi.org/10.2478/s11696-011-0013-6


Zeolite-based photocatalysts were prepared by the sol-gel and deposition methods. The photocatalysts were characterised by X-ray diffraction, nitrogen adsorption-desorption isotherms, FTIR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectrometry. The activity of the prepared photocatalysts was evaluated by the UV-induced degradation of acid blue 92, a textile dye in common use. The effect of various parameters, such as catalyst concentration, initial dye concentration, thiosulphate concentration and pH, on the rate and efficiency of the photocatalytic degradation of acid blue 92 was investigated. The results showed that each parameter influenced the degradation rate and efficiency in a particular way. It was also found that, under optimised conditions, Ag/AgBr/TiO2/zeolite exhibited the highest photocatalytic performance. A comparison of catalytic activity when exposed to visible light under the same conditions showed that the photocatalysts containing AgBr had the highest activity.

Keywords: zeolite; TiO2; sol-gel method; photocatalytic degradation; acid blue 92

  • [1] Anandan, S., & Yoon, M. (2003). Photocatalytic activities of the nano-sized TiO2 supported Y-zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 5–18. DOI: 10.1016/S1389-5567(03)00002-9. http://dx.doi.org/10.1016/S1389-5567(03)00002-9CrossrefGoogle Scholar

  • [2] Ao, C. H., & Lee, S. C. (2004). Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry, 161, 131–140. DOI: 10.1016/S1010-6030(03)00276-4. http://dx.doi.org/10.1016/S1010-6030(03)00276-4Google Scholar

  • [3] Behar, D., & Fessenden, R. W. (1971). An investigation of radicals produced in the photolysis of thiosulfate solutions by electron spin resonance. Journal of Physical Chemistry, 75, 2752–2755. DOI: 10.1021/j100687a007. http://dx.doi.org/10.1021/j100687a007CrossrefGoogle Scholar

  • [4] Cao, J. J. (2004). Study on crystal structure of modified mordenite. Spectroscopy and Spectral Analysis, 24, 251–254. (in Chinese) Google Scholar

  • [5] Chen, C.-Y. (2009). Photocatalytic degradation of azo dye reactive orange 16 by TiO2. Water, Air & Soil Pollution, 202, 335–342. DOI: 10.1007/s11270-009-9980-4. http://dx.doi.org/10.1007/s11270-009-9980-4CrossrefGoogle Scholar

  • [6] Druschel, G. K., Hamers, R. J., Luther, G. W., & Banfield, J. F. (2003). Kinetics and mechanism of trithionate and tetrathionate oxidation at low pH by hydroxyl radicals. Aquatic Geochemistry, 9, 145–164. DOI: 10.1023/B:AQUA.0000019495.91752.d7. http://dx.doi.org/10.1023/B:AQUA.0000019495.91752.d7CrossrefGoogle Scholar

  • [7] Elahifard, M. R., Rahimnejad, S., Haghighi, S., & Gholami, M. R. (2007). Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. Journal of the American Chemical Society, 129, 9552–9553. DOI: 10.1021/ja072492m. http://dx.doi.org/10.1021/ja072492mCrossrefWeb of ScienceGoogle Scholar

  • [8] Fernández, A., Lassaletta, G., Jiménez, V. M., Justo, A., González-Elipe, A. R., Herrmann, J.-M., Tahiri, H., & Ait-Ichou, Y. (1995). Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental, 7, 49–63. DOI: 10.1016/0926-3373(95)00026-7. http://dx.doi.org/10.1016/0926-3373(95)00026-7CrossrefGoogle Scholar

  • [9] Gao, J., Li, S., Yang, W., Zhao, G., Bo, L., & Song, L. (2007). Preparation and photocatalytic activity of PANI/TiO2 composite film. Rare Metals, 26, 1–7. DOI: 10.1016/S1001-0521(07)60018-7. http://dx.doi.org/10.1016/S1001-0521(07)60018-7CrossrefGoogle Scholar

  • [10] Ghasemi, S., Rahimnejad, S., Rahman Setayesh, S., Hosseini, M., & Gholami, M. R. (2009a). Kinetic investigation of the photocatalytic degradation of acid blue 92 in aqueous solution using nanocrystalline TiO2 prepared in an ionic liquid. Progress in Reaction Kinetics and Mechanism, 34, 55–76. DOI: 10.3184/146867809X413247. http://dx.doi.org/10.3184/146867809X413247CrossrefGoogle Scholar

  • [11] Ghasemi, S., Rahimnejad, S., Rahman Setayesh, S., Rohani, S., & Gholami, M. R. (2009b). Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. Journal of Hazardous Materials, 172, 1573–1578. DOI: 10.1016/j.jhazmat.2009.08.029. http://dx.doi.org/10.1016/j.jhazmat.2009.08.029CrossrefGoogle Scholar

  • [12] Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., & Wu, J. (2008). Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and Pigments, 77, 327–334. DOI: 10.1016/j.dyepig.2007.01.026. http://dx.doi.org/10.1016/j.dyepig.2007.01.026Web of ScienceCrossrefGoogle Scholar

  • [13] Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49, 1–14. DOI: 10.1016/j.apcatb.2003.11.010. http://dx.doi.org/10.1016/j.apcatb.2003.11.010CrossrefGoogle Scholar

  • [14] Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevska, T., Gunko, V. M., & Ryczkowski, J. (2005). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243–254. DOI: 10.1016/j.micromeso.2005.08.002. http://dx.doi.org/10.1016/j.micromeso.2005.08.002CrossrefGoogle Scholar

  • [15] Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., & Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied Surface Science, 252, 1410–1416. DOI: 10.1016/j.apsusc.2005.02.111. http://dx.doi.org/10.1016/j.apsusc.2005.02.111CrossrefGoogle Scholar

  • [16] Majdan, M., Kowalska-Ternes, M., Pikus, S., Staszczuk, P., Skrzypek, H., & Zięba, E. (2003). Vibrational and scanning electron microscopy study of the mordenite modified by Mn, Co, Ni, Cu, Zn and Cd. Journal of Molecular Structure, 649, 279–285. DOI: 10.1016/S0022-2860(03)00082-6. http://dx.doi.org/10.1016/S0022-2860(03)00082-6CrossrefGoogle Scholar

  • [17] Ooka, C., Yoshida, H., Suzuki, K., & Hattori, T. (2004). Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 67, 143–150. DOI: 10.1016/j.micromeso.2003.10.011. http://dx.doi.org/10.1016/j.micromeso.2003.10.011CrossrefGoogle Scholar

  • [18] Patterson, H. H., Gomez, R. S., Lu, H., & Yson, R. L. (2007). Nanoclusters of silver doped in zeolites as photocatalyst. Catalysis Today, 120, 168–173. DOI: 10.1016/j.cattod.2006.07.057. http://dx.doi.org/10.1016/j.cattod.2006.07.057Web of ScienceCrossrefGoogle Scholar

  • [19] Rashed, M. N., & El-Amin, A. A. (2007). Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. International Journal of Physical Sciences, 2, 73–81. Google Scholar

  • [20] Robert, D., Piscopo, A., Heintz, O., & Weber, J. V. (1999). Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light. Catalysis Today, 54, 291–296. DOI: 10.1016/S0920-5861(99)00190-X. http://dx.doi.org/10.1016/S0920-5861(99)00190-XCrossrefGoogle Scholar

  • [21] Ševčík, P., Čík, G., Vlna, T., & Mackuľak, T. (2009). Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide. Chemical Papers, 63, 249–254. DOI: 10.2478/s11696-008-0101-4. http://dx.doi.org/10.2478/s11696-008-0101-4CrossrefGoogle Scholar

  • [22] Sleiman, M., Vildozo, D., Ferronato, C., & Chovelon, J.-M. (2007). Photocatalytic degradation of azo dye metanil yellow: Optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental, 77, 1–11. DOI: 10.1016/j.apcatb.2007.06.015. http://dx.doi.org/10.1016/j.apcatb.2007.06.015CrossrefWeb of ScienceGoogle Scholar

  • [23] Xu, Y., & Langford, C. H. (1997). Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y. Journal of Physical Chemistry B, 101, 3115–3121. DOI: 10.1021/jp962494l. http://dx.doi.org/10.1021/jp962494lCrossrefGoogle Scholar

  • [24] Xu, Y., & Langford, C. H. (1995). Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite A at low coverage. Journal of Physical Chemistry, 99, 11501–11507. DOI: 10.1021/j100029a031. http://dx.doi.org/10.1021/j100029a031CrossrefGoogle Scholar

  • [25] Zielińska, B., & Morawski, A. W. (2005). TiO2 photocatalysts promoted by alkali metals. Applied Catalysis B: Environmental, 55, 221–226. DOI: 10.1016/j.apcatb.2004.08.015. http://dx.doi.org/10.1016/j.apcatb.2004.08.015CrossrefGoogle Scholar

About the article

Published Online: 2011-03-16

Published in Print: 2011-06-01

Citation Information: Chemical Papers, Volume 65, Issue 3, Pages 280–288, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-011-0013-6.

Export Citation

© 2011 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in