Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 65, Issue 4

Issues

Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis

Piotr Mitkowski
  • Department of Chemical Engineering and Equipment, Poznań University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60 965, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-05-21 | DOI: https://doi.org/10.2478/s11696-011-0036-z

Abstract

Hybrid processes have received increased attention in the field of chemical and biochemical engineering because of their ability to overcome certain obstacles related to thermodynamics of the separation task to be carried out. Usually, in a hybrid process two processes are coupled; either reaction with separation or two different separation processes. In the design of such hybrid systems, the performance of each constituent element has to be taken into account, while their optimisation must account for their interdependency. In this paper, the methodology presented by Mitkowski et al. (2009a) is applied to design and analyse a hybrid process scheme for the synthesis of ethyl lactate. Generated hybrid process schemes have been validated through computer-aided simulations.

Keywords: hybrid process; process design; ethyl lactate; solvent selection

  • [1] Adams, T. A., II, & Seider, W. D. (2008). Semicontinuous distillation for ethyl lactate production. AIChE Journal, 54, 2539–2552. DOI: 10.1002/aic.11585. http://dx.doi.org/10.1002/aic.11585CrossrefWeb of ScienceGoogle Scholar

  • [2] Benedict, D. J., Parulekar, S. J., & Tsai, S. P. (2006). Pervaporation-assisted esterification of lactic and succinic acids with downstream ester recovery. Journal of Membrane Science, 281, 435–445. DOI: 10.1016/j.memsci.2006.04.012. http://dx.doi.org/10.1016/j.memsci.2006.04.012CrossrefGoogle Scholar

  • [3] Benedict, D. J., Parulekar, S. J., & Tsai, S.-P. (2003). Esterification of lactic acid and ethanol with/without pervaporation. Industrial & Engineering Chemistry Research, 42, 2282–2291. DOI: 10.1021/ie020850i. http://dx.doi.org/10.1021/ie020850iCrossrefGoogle Scholar

  • [4] Blahušiak, M., Schlosser, Š., & Marták, J. (2010). Simulation of a hybrid fermentation-separation process for production of butyric acid. Chemical Papers, 64, 213–222. DOI: 10.2478/s11696-009-0114-7. http://dx.doi.org/10.2478/s11696-009-0114-7Web of ScienceCrossrefGoogle Scholar

  • [5] Buchaly, C., Kreis, P., & Górak, A. (2007). Hybrid separation processes-Combination of reactive distillation with membrane separation. Chemical Engineering and Processing, 46, 790–799. DOI: 10.1016/j.cep.2007.05.023. http://dx.doi.org/10.1016/j.cep.2007.05.023Web of ScienceCrossrefGoogle Scholar

  • [6] CAPEC (Computer Aided Process Engineering Center) (2008). Integrated computer aided system (ICAS) (Manual delivered with ICAS software). Lyngby, Denmark: Technical University of Denmark. Google Scholar

  • [7] CAPEC (Computer Aided Process Engineering Center) (2002). ICAS documentations. Lyngby, Denmark: Technical University of Denmark. (CAPEC Internal Report, PEC02-14). Google Scholar

  • [8] Delgado, P., Sanz, M. T., & Beltrán, S. (2007a). Isobaric vapour-liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa. Fluid Phase Equilibria, 255, 17–23. DOI: 10.1016/j.fluid.2007.03.022. http://dx.doi.org/10.1016/j.fluid.2007.03.022CrossrefWeb of ScienceGoogle Scholar

  • [9] Delgado, P., Sanz, M. T., & Beltrán, S. (2007b). Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chemical Engineering Journal, 126, 111–118. DOI: 10.1016/j.cej.2006.09.004. http://dx.doi.org/10.1016/j.cej.2006.09.004Web of ScienceCrossrefGoogle Scholar

  • [10] Engin, A., Haluk, H., & Gurkan, K. (2003). Production of lactic acid esters catalyzed by heteropoly acid supported over ion-exchange resins. Green Chemistry, 5, 460–466. DOI: 10.1039/b303327a. http://dx.doi.org/10.1039/b303327aCrossrefGoogle Scholar

  • [11] Gani, R., Hytoft, G., Jaksland, C., & Jensen, A. K. (1997). An integrated computer aided system for integrated design of chemical processes. Computers & Chemical Engineering, 21, 1135–1146. DOI: 10.1016/S0098-1354(96)00324-9. http://dx.doi.org/10.1016/S0098-1354(96)00324-9CrossrefGoogle Scholar

  • [12] Gani, R., Jiménez-González, C., & Constable, D. J. C. (2005). Method for selection of solvents for promotion of organic reactions. Computers & Chemical Engineering, 29, 1661–1676. DOI: 10.1016/j.compchemeng.2005.02.021. http://dx.doi.org/10.1016/j.compchemeng.2005.02.021CrossrefGoogle Scholar

  • [13] Gani, R., & O’Connell, J. P. (1989). A knowledge based system for the selection of thermodynamic models. Computers & Chemical Engineering, 13, 397–404. DOI: 10.1016/0098-1354(89)85019-7. http://dx.doi.org/10.1016/0098-1354(89)85019-7Web of ScienceCrossrefGoogle Scholar

  • [14] Koszorz, Z., Nemestothy, N., Ziobrowski, Z., Belafi-Bako, K., & Krupiczka, R. (2004). Influence of pervaporation process parameters on enzymatic catalyst deactivation. Desalination, 162, 307–313. DOI: 10.1016/S0011-9164(04)00064-5. http://dx.doi.org/10.1016/S0011-9164(04)00064-5CrossrefGoogle Scholar

  • [15] Lipnizki, F., Field, R. W., & Ten, P.-K, (1999). Pervaporation-based hybrid process: a review of process design, applications and economics. Journal of Membrane Science, 153, 183–210. DOI: 10.1016/S0376-7388(98)00253-1. http://dx.doi.org/10.1016/S0376-7388(98)00253-1CrossrefGoogle Scholar

  • [16] Matouq, M., Tagawa, T., & Goto, S. (1994). Combined process for production of methyl tert-buthyl ether from tert-buthyl alcohol and methanol. Journal of Chemical Engineering of Japan, 27, 302–306. DOI: 10.1252/jcej.27.302. http://dx.doi.org/10.1252/jcej.27.302CrossrefGoogle Scholar

  • [17] Mihaľ, M., Švandovǎ, Z., & Markoš, J. (2010). Steady state and dynamic simulation of a hybrid reactive separation process. Chemical Papers, 64, 193–202. DOI: 10.2478/s11696-009-0110-y. http://dx.doi.org/10.2478/s11696-009-0110-yCrossrefWeb of ScienceGoogle Scholar

  • [18] Mitkowski, P. T., Buchaly, C., Kreis, P., Jonsson, G., Górak, A., & Gani, R. (2009a). Computer aided design, analysis and experimental investigation of membrane assisted batch reaction-separation systems. Computers & Chemical Engineering, 33, 551–574. DOI: 10.1016/j.compchemeng.2008.07. 012. http://dx.doi.org/10.1016/j.compchemeng.2008.07.012CrossrefGoogle Scholar

  • [19] Mitkowski, P. T., Gani, R., & Broniarz-Press, L. (2009b). Novel membrane database in chemical process design. In Proceedings of the 8th World Congress of Chemical Engineering, 23–27 August 2009 (Paper No. 687, pp. 1–6). Montreal, QC, Canada. Google Scholar

  • [20] Mulder, M., (1996). Basic principles of membrane technology (2nd ed.). Dordrecht, The Netherlands: Kluwer Academic. Google Scholar

  • [21] Nielsen, T. L., Abildskov, J., Harper, P. M., Papaeconomou, I., & Gani, R. (2001). The CAPEC database. Journal of Chemical & Engineering Data, 46, 1041–1044. DOI: 10.1021/je000244z. http://dx.doi.org/10.1021/je000244zCrossrefGoogle Scholar

  • [22] Parulekar, S. J. (2007). Analysis of pervaporation-aided esterification of organic acids. Industrial & Engineering Chemistry Research, 46, 8490–8504. DOI: 10.1021/ie061157o. http://dx.doi.org/10.1021/ie061157oWeb of ScienceCrossrefGoogle Scholar

  • [23] Pérez Cisneros, E. S., Gani, R., & Michelsen, M. L. (1997). Reactive separation systems—I. Computation of physical and chemical equilibrium. Chemical Engineering Science, 52, 527–543. DOI: 10.1016/S0009-2509(96)00424-1. http://dx.doi.org/10.1016/S0009-2509(96)00424-1CrossrefGoogle Scholar

  • [24] Sales-Cruz, M., & Gani, R. (2003). A modelling tool for different stages of the process life. In S. P. Asprey, & S. Macchietto (Eds.), Computer aided chemical engineering (Vol. 16, pp. 209–249). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S1570-7946(03)80076-7. CrossrefGoogle Scholar

  • [25] Schmidt-Traub, H., & Górak, A. (2006). Integrated reaction and separation operations: Modelling and experimental operations. Berlin, Heidelberg, Germany: Springer-Verlag. Google Scholar

  • [26] Sigma-Aldrich (2010). Product catalog. Retrieved March 11, 2011, from www.sigmaaldrich.com Google Scholar

  • [27] Van Baelen, D., Van der Bruggen, B., Van den Dungen, K., Degreve, J., & Vandecasteele, C. (2005). Pervaporation of water-alcohol mixtures and acetic acid-water mixtures. Chemical Engineering Science, 60, 1583–1590. DOI: 10.1016/j.ces.2004.10.030. http://dx.doi.org/10.1016/j.ces.2004.10.030CrossrefGoogle Scholar

  • [28] Vu, D. T., Lira, C. T., Asthana, N. S., Kolah, A. K., & Miller, D. J. (2006). Vapor-liquid equilibria in the systems ethyl lactate + ethanol and ethyl lactate + water. Journal of Chemical & Engineering Data, 51, 1220–1225. DOI: 10.1021/je050537y. http://dx.doi.org/10.1021/je050537yCrossrefWeb of ScienceGoogle Scholar

  • [29] Whu, J. A., Baltzis, B. C., & Sirkar, K. K. (1999). Modelling of nanofiltration — assisted organic synthesis. Journal of Membrane Science, 163, 319–331. DOI: 10.1016/S0376-7388(99)00175-1. http://dx.doi.org/10.1016/S0376-7388(99)00175-1CrossrefGoogle Scholar

  • [30] Zhang, Y., Ma, L., & Yang, J. (2004). Kinetics of esterification of lactic acid with ethanol catalyzed by cation-exchange resins. Reactive and Functional Polymers, 61, 101–114, DOI: 10.1016/j.reactfunctpolym.2004.04.003. http://dx.doi.org/10.1016/j.reactfunctpolym.2004.04.003CrossrefGoogle Scholar

About the article

Published Online: 2011-05-21

Published in Print: 2011-08-01


Citation Information: Chemical Papers, Volume 65, Issue 4, Pages 412–426, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-011-0036-z.

Export Citation

© 2011 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in