Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Chemical Papers


IMPACT FACTOR 2015: 1.326

SCImago Journal Rank (SJR) 2015: 0.382
Source Normalized Impact per Paper (SNIP) 2015: 0.560
Impact per Publication (IPP) 2015: 1.279

Online
ISSN
1336-9075
See all formats and pricing
In This Section
Volume 65, Issue 6 (Dec 2011)

Issues

Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery

Filippo Rossi
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email:
/ Tommaso Casalini
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email:
/ Marco Santoro
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email:
/ Andrea Mele
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email:
/ Giuseppe Perale
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email:
Published Online: 2011-09-28 | DOI: https://doi.org/10.2478/s11696-011-0059-5

Abstract

A number of studies and works in drug delivery literature are focused on the understanding and modelling of transport phenomena, the pivotal point of a good scaffold design for tissue engineering. Accurate knowledge of the diffusion coefficient of an active drug plays a key role in the analysis, prediction of their kinetics and formulation of efficient drug delivery systems. In this work, the kinetics of the release of methylprednisolone from agar-Carbomer hydrogel were studied taking into consideration the different drug concentrations and clearances typically achieved in in vitro or in vivo tests. Starting from the experiments it is possible to model the transport phenomenon and to calculate the diffusion coefficient through the hydrogel matrix.

Keywords: biomaterials; diffusion; drug delivery; hydrogel; methylprednisolone

  • [1] Alexis, F. (2005). Factors affecting the degradation and drugrelease mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 54, 36–46. DOI: 10.1002/pi.1697. http://dx.doi.org/10.1002/pi.1697 [Crossref]

  • [2] Arosio, P., Xie, D., Wu, H., Braun, L., & Morbidelli, M. (2010). Effect of primary particle morphology on the structure of gels formed in intense turbulent shear. Langmuir, 26, 6643–6649. DOI 10.1021/La9039754. http://dx.doi.org/10.1021/la9039754 [Crossref] [Web of Science]

  • [3] Badylak, S. F., & Nerem, R. M. (2010). Progress in tissue engineering and regenerative medicine. Proceedings of the National Academy of Sciences of the United States of America, 107, 3285–3286. DOI: 10.1073/pnas.1000256107. http://dx.doi.org/10.1073/pnas.1000256107 [Web of Science] [Crossref]

  • [4] Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y., Kim, H., Lapitsky, Y., & Shoichet, M. S. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213. DOI: 10.1016/j.jconrel.2009.05.009. http://dx.doi.org/10.1016/j.jconrel.2009.05.009 [Crossref]

  • [5] Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., Eisenberg, H. M., Flamm, E., Leo-Summers, L., Maroon, J., Marshall, L. F., Perot, P. L., Jr., Piepmeier, J., Sonstag, V. K. H., Wagner, F. C., Wilberger, J. E., & Winn, H. R. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. New England Journal of Medicine, 322, 1405–1411. http://dx.doi.org/10.1056/NEJM199005173222001

  • [6] Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., Fehlings, M., Herr, D. L., Hitchon, P. W., Marshall, L. F., Nockels, R. P., Pascale, V., Perot, P. L., Jr., Piepmeier, J., Sonntag, V. K. H., Wagner, F., Wilberger, J. E., Winn, H. R., & Young, W. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. The Journal of the American Medical Association, 277, 1597–1604. DOI: 10.1001/jama.1997.03540440031029. http://dx.doi.org/10.1001/jama.277.20.1597 [Crossref]

  • [7] Cao, K., Huang, L., Liu, J., An, H., Shu, Y., & Han, Z. (2010). Inhibitory effects of high-dose methylprednisolone on bacterial translocation from gut and endotoxin release following acute spinal cord injury-induced paraplegia in rats. Neural Regeneration Research, 5, 456–460. DOI: 10.3969/j.issn.1673-5374.2010.06.009 [Web of Science] [Crossref]

  • [8] Claußen, S., Janich, M., & Neubert, R. (2003). Light scattering investigations on freeze-dried glucocorticoids in aqueous solution. International Journal of Pharmaceutics, 252, 267–270. DOI: 10.1016/S0378-5173(02)00600-2. http://dx.doi.org/10.1016/S0378-5173(02)00600-2 [Crossref]

  • [9] Crank, J. (1975). The mathematics of diffusion. Oxford, UK: Clarendon Press.

  • [10] Falk, B., Garramone, S., & Shivkumar, S. (2004). Diffusion coefficient of paracetamol in a chitosan hydrogel. Materials Let ters, 58, 3261–3265. DOI: 10.1016/j.matlet.2004.05.072. http://dx.doi.org/10.1016/j.matlet.2004.05.072 [Crossref]

  • [11] Hejčl, A., Šedý, J., Kapcalová, M., Toro, D. A., Amemori, T., Lesný, P., Likavčanová-Mašínová, K., Krumbholcová, E., Přádný, M., Michálek, J., Burian, M., Hájek, M., Jendelová, P., & Syková, E. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells and Development, 19, 1535–1546. DOI: 10.1089/scd.2009.0378. http://dx.doi.org/10.1089/scd.2009.0378 [Crossref]

  • [12] Johansson, L., Skantze, U., & Loefroth, J. E. (1991). Diffusion and interaction in gels and solutions. 2. Experimental results on the obstruction effect. Macromolecules, 24, 6019–6023. DOI: 10.1021/ma00022a018. http://dx.doi.org/10.1021/ma00022a018

  • [13] Katz, J. S., & Burdick, J. A. (2009). Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 128–139. DOI: 10.1002/wnan.010. http://dx.doi.org/10.1002/wnan.10 [Crossref] [Web of Science]

  • [14] Kim, Y.-T., Caldwell, J.-M., & Bellamkonda, R. V. (2009). Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials, 30, 2582–2590. DOI: 10.1016/j.biomaterials.2008.12.077. http://dx.doi.org/10.1016/j.biomaterials.2008.12.077 [Crossref]

  • [15] Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926. DOI: 10.1126/science.8493529. http://dx.doi.org/10.1126/science.8493529 [Crossref]

  • [16] Lanza, R. P., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering (2nd ed.). Academic Press.

  • [17] Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58, 1379–1408. DOI: 10.1016/j.addr.2006.09.004. http://dx.doi.org/10.1016/j.addr.2006.09.004 [Crossref]

  • [18] Loh, X. J., Peh, P., Liao, S., Sng, C., & Li, J. (2010). Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 143, 175–182. DOI: 10.1016/j.jconrel.2009.12.030. http://dx.doi.org/10.1016/j.jconrel.2009.12.030 [Web of Science] [Crossref]

  • [19] Mouriño, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 7, 209–227. DOI: 10.1098/rsif.2009.0379. http://dx.doi.org/10.1098/rsif.2009.0379 [Crossref] [Web of Science]

  • [20] Perale, G., Arosio, P., Moscatelli, D., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2009). A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional model. Journal of Controlled Release, 136, 196–205. DOI: 10.1016/j.jconrel.2009.02.014 http://dx.doi.org/10.1016/j.jconrel.2009.02.014 [Web of Science]

  • [21] Perale, G., Casalini, T., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2010). Lidocaine release from polycaprolactone threads. Journal of Applied Polymer Science, 117, 3610–3614. DOI: 10.1002/app.32262. [Crossref] [Web of Science]

  • [22] Perale, G., Giordano, C., Bianco, F., Rossi, F., Tunesi, M., Daniele, F., Crivelli, F., Matteoli, M., & Masi, M. (2011a). Hydrogel for cell housing in the brain and in the spinal cord. International Journal of Artificial Organs, 34, 295–303. DOI: 10.5301/IJAO.2011.6488. http://dx.doi.org/10.5301/IJAO.2011.6488 [Crossref] [Web of Science]

  • [23] Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., & Veglianese, P. (2011b). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345. DOI: 10.1021/cn200030w. http://dx.doi.org/10.1021/cn200030w [Web of Science] [Crossref]

  • [24] Perale, G., Veglianese, P., Rossi, F., Peviani, M., Santoro, M., Llupi, D., Micotti, E., Forloni, G., & Masi, M. (2011c). In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Materials Letters, 65, 1688–1692. DOI: 10.1016/j.matlet.2011.02.036. http://dx.doi.org/10.1016/j.matlet.2011.02.036 [Web of Science] [Crossref]

  • [25] Rossi, F., Chatzistavrou, X., Perale, G., & Boccaccini, A. R. (2011). Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering applications. Journal of Applied Polymer Science. (in press) [Web of Science]

  • [26] Rossi, F., Perale, G., & Masi, M. (2010). Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chemical Papers, 64, 573–578. DOI: 10.2478/s11696-010-0052-4. http://dx.doi.org/10.2478/s11696-010-0052-4 [Crossref]

  • [27] Sakurada, K., McDonald, F. M., & Shimada, F. (2008). Regenerative medicine and stem cell based drug discovery. Angewandte Chemie-International Edition, 47, 5718–5738. DOI: 10.1002/anie.200700724. http://dx.doi.org/10.1002/anie.200700724 [Crossref] [Web of Science]

  • [28] Sant, S., Thommes, M., & Hildgen, P. (2008). Microporous structure and drug release kinetics of polymeric nanoparticles. Langmuir, 24, 280–287. DOI: 10.1021/la702244w. http://dx.doi.org/10.1021/la702244w [Web of Science] [Crossref]

  • [29] Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). A smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394. http://dx.doi.org/10.1021/jp1111394 [Crossref] [Web of Science]

  • [30] Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901530r. http://dx.doi.org/10.1021/ma901530r [Web of Science] [Crossref]

  • [31] Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106. http://dx.doi.org/10.1002/adma.200802106 [Crossref] [Web of Science]

  • [32] Stella, V. J., Lee, H. K., & Thompson, D. O. (1995). The effect of SBE4-β-cd on i.v. methylprednisolone pharmacokinetics in rats: Comparison to a co-solvent solution and two watersoluble prodrugs. International Journal of Pharmaceutics, 120, 189–195. DOI: 10.1016/0378-5173(94)00404-S. http://dx.doi.org/10.1016/0378-5173(94)00404-S [Crossref]

  • [33] Tan, H., Ramirez, C. M., Miljkovic, N., Li, H., Rubin, J. P., & Marra, K. G. (2009). Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 30, 6844–6853. DOI: 10.1016/J.Biomaterials.2009.08.058. http://dx.doi.org/10.1016/j.biomaterials.2009.08.058 [Crossref] [Web of Science]

  • [34] Tang, Y., Zhao, Y., Li, Y., & Du, Y. (2010). A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polymer Bulletin, 64, 791–804. DOI: 10.1007/s00289-009-0214-0. http://dx.doi.org/10.1007/s00289-009-0214-0 [Crossref] [Web of Science]

About the article

Published Online: 2011-09-28

Published in Print: 2011-12-01



Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-011-0059-5. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
F. Castiglione, V. Crupi, D. Majolino, A. Mele, L. Melone, W. Panzeri, C. Punta, B. Rossi, F. Trotta, and V. Venuti
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, Volume 80, Number 1-2, Page 77
[2]
Giuseppe Perale, Filippo Rossi, Marco Santoro, Marco Peviani, Simonetta Papa, Dorina Llupi, Paola Torriani, Edoardo Micotti, Sara Previdi, Luigi Cervo, Erik Sundström, Aldo R. Boccaccini, Maurizio Masi, Gianluigi Forloni, and Pietro Veglianese
Journal of Controlled Release, 2012, Volume 159, Number 2, Page 271
[3]
Giuseppe Perale, Filippo Rossi, Pietro Veglianese, and Maurizio Masi
Chemical Papers, 2012, Volume 66, Number 2

Comments (0)

Please log in or register to comment.
Log in