Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers


IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 65, Issue 6 (Dec 2011)

Issues

Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery

Filippo Rossi
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tommaso Casalini
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Santoro
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Mele
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giuseppe Perale
  • Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-28 | DOI: https://doi.org/10.2478/s11696-011-0059-5

Abstract

A number of studies and works in drug delivery literature are focused on the understanding and modelling of transport phenomena, the pivotal point of a good scaffold design for tissue engineering. Accurate knowledge of the diffusion coefficient of an active drug plays a key role in the analysis, prediction of their kinetics and formulation of efficient drug delivery systems. In this work, the kinetics of the release of methylprednisolone from agar-Carbomer hydrogel were studied taking into consideration the different drug concentrations and clearances typically achieved in in vitro or in vivo tests. Starting from the experiments it is possible to model the transport phenomenon and to calculate the diffusion coefficient through the hydrogel matrix.

Keywords: biomaterials; diffusion; drug delivery; hydrogel; methylprednisolone

  • [1] Alexis, F. (2005). Factors affecting the degradation and drugrelease mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 54, 36–46. DOI: 10.1002/pi.1697. http://dx.doi.org/10.1002/pi.1697CrossrefGoogle Scholar

  • [2] Arosio, P., Xie, D., Wu, H., Braun, L., & Morbidelli, M. (2010). Effect of primary particle morphology on the structure of gels formed in intense turbulent shear. Langmuir, 26, 6643–6649. DOI 10.1021/La9039754. http://dx.doi.org/10.1021/la9039754CrossrefWeb of ScienceGoogle Scholar

  • [3] Badylak, S. F., & Nerem, R. M. (2010). Progress in tissue engineering and regenerative medicine. Proceedings of the National Academy of Sciences of the United States of America, 107, 3285–3286. DOI: 10.1073/pnas.1000256107. http://dx.doi.org/10.1073/pnas.1000256107Web of ScienceCrossrefGoogle Scholar

  • [4] Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y., Kim, H., Lapitsky, Y., & Shoichet, M. S. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213. DOI: 10.1016/j.jconrel.2009.05.009. http://dx.doi.org/10.1016/j.jconrel.2009.05.009CrossrefGoogle Scholar

  • [5] Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., Eisenberg, H. M., Flamm, E., Leo-Summers, L., Maroon, J., Marshall, L. F., Perot, P. L., Jr., Piepmeier, J., Sonstag, V. K. H., Wagner, F. C., Wilberger, J. E., & Winn, H. R. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. New England Journal of Medicine, 322, 1405–1411. http://dx.doi.org/10.1056/NEJM199005173222001Google Scholar

  • [6] Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., Fehlings, M., Herr, D. L., Hitchon, P. W., Marshall, L. F., Nockels, R. P., Pascale, V., Perot, P. L., Jr., Piepmeier, J., Sonntag, V. K. H., Wagner, F., Wilberger, J. E., Winn, H. R., & Young, W. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. The Journal of the American Medical Association, 277, 1597–1604. DOI: 10.1001/jama.1997.03540440031029. http://dx.doi.org/10.1001/jama.277.20.1597CrossrefGoogle Scholar

  • [7] Cao, K., Huang, L., Liu, J., An, H., Shu, Y., & Han, Z. (2010). Inhibitory effects of high-dose methylprednisolone on bacterial translocation from gut and endotoxin release following acute spinal cord injury-induced paraplegia in rats. Neural Regeneration Research, 5, 456–460. DOI: 10.3969/j.issn.1673-5374.2010.06.009 Web of ScienceCrossrefGoogle Scholar

  • [8] Claußen, S., Janich, M., & Neubert, R. (2003). Light scattering investigations on freeze-dried glucocorticoids in aqueous solution. International Journal of Pharmaceutics, 252, 267–270. DOI: 10.1016/S0378-5173(02)00600-2. http://dx.doi.org/10.1016/S0378-5173(02)00600-2CrossrefGoogle Scholar

  • [9] Crank, J. (1975). The mathematics of diffusion. Oxford, UK: Clarendon Press. Google Scholar

  • [10] Falk, B., Garramone, S., & Shivkumar, S. (2004). Diffusion coefficient of paracetamol in a chitosan hydrogel. Materials Let ters, 58, 3261–3265. DOI: 10.1016/j.matlet.2004.05.072. http://dx.doi.org/10.1016/j.matlet.2004.05.072CrossrefGoogle Scholar

  • [11] Hejčl, A., Šedý, J., Kapcalová, M., Toro, D. A., Amemori, T., Lesný, P., Likavčanová-Mašínová, K., Krumbholcová, E., Přádný, M., Michálek, J., Burian, M., Hájek, M., Jendelová, P., & Syková, E. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells and Development, 19, 1535–1546. DOI: 10.1089/scd.2009.0378. http://dx.doi.org/10.1089/scd.2009.0378CrossrefGoogle Scholar

  • [12] Johansson, L., Skantze, U., & Loefroth, J. E. (1991). Diffusion and interaction in gels and solutions. 2. Experimental results on the obstruction effect. Macromolecules, 24, 6019–6023. DOI: 10.1021/ma00022a018. http://dx.doi.org/10.1021/ma00022a018Google Scholar

  • [13] Katz, J. S., & Burdick, J. A. (2009). Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 128–139. DOI: 10.1002/wnan.010. http://dx.doi.org/10.1002/wnan.10CrossrefWeb of ScienceGoogle Scholar

  • [14] Kim, Y.-T., Caldwell, J.-M., & Bellamkonda, R. V. (2009). Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials, 30, 2582–2590. DOI: 10.1016/j.biomaterials.2008.12.077. http://dx.doi.org/10.1016/j.biomaterials.2008.12.077CrossrefGoogle Scholar

  • [15] Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926. DOI: 10.1126/science.8493529. http://dx.doi.org/10.1126/science.8493529CrossrefGoogle Scholar

  • [16] Lanza, R. P., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering (2nd ed.). Academic Press. Google Scholar

  • [17] Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58, 1379–1408. DOI: 10.1016/j.addr.2006.09.004. http://dx.doi.org/10.1016/j.addr.2006.09.004CrossrefGoogle Scholar

  • [18] Loh, X. J., Peh, P., Liao, S., Sng, C., & Li, J. (2010). Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 143, 175–182. DOI: 10.1016/j.jconrel.2009.12.030. http://dx.doi.org/10.1016/j.jconrel.2009.12.030Web of ScienceCrossrefGoogle Scholar

  • [19] Mouriño, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 7, 209–227. DOI: 10.1098/rsif.2009.0379. http://dx.doi.org/10.1098/rsif.2009.0379CrossrefWeb of ScienceGoogle Scholar

  • [20] Perale, G., Arosio, P., Moscatelli, D., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2009). A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional model. Journal of Controlled Release, 136, 196–205. DOI: 10.1016/j.jconrel.2009.02.014 http://dx.doi.org/10.1016/j.jconrel.2009.02.014Web of ScienceGoogle Scholar

  • [21] Perale, G., Casalini, T., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2010). Lidocaine release from polycaprolactone threads. Journal of Applied Polymer Science, 117, 3610–3614. DOI: 10.1002/app.32262. CrossrefWeb of ScienceGoogle Scholar

  • [22] Perale, G., Giordano, C., Bianco, F., Rossi, F., Tunesi, M., Daniele, F., Crivelli, F., Matteoli, M., & Masi, M. (2011a). Hydrogel for cell housing in the brain and in the spinal cord. International Journal of Artificial Organs, 34, 295–303. DOI: 10.5301/IJAO.2011.6488. http://dx.doi.org/10.5301/IJAO.2011.6488CrossrefWeb of ScienceGoogle Scholar

  • [23] Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., & Veglianese, P. (2011b). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345. DOI: 10.1021/cn200030w. http://dx.doi.org/10.1021/cn200030wWeb of ScienceCrossrefGoogle Scholar

  • [24] Perale, G., Veglianese, P., Rossi, F., Peviani, M., Santoro, M., Llupi, D., Micotti, E., Forloni, G., & Masi, M. (2011c). In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Materials Letters, 65, 1688–1692. DOI: 10.1016/j.matlet.2011.02.036. http://dx.doi.org/10.1016/j.matlet.2011.02.036Web of ScienceCrossrefGoogle Scholar

  • [25] Rossi, F., Chatzistavrou, X., Perale, G., & Boccaccini, A. R. (2011). Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering applications. Journal of Applied Polymer Science. (in press) Web of ScienceGoogle Scholar

  • [26] Rossi, F., Perale, G., & Masi, M. (2010). Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chemical Papers, 64, 573–578. DOI: 10.2478/s11696-010-0052-4. http://dx.doi.org/10.2478/s11696-010-0052-4CrossrefGoogle Scholar

  • [27] Sakurada, K., McDonald, F. M., & Shimada, F. (2008). Regenerative medicine and stem cell based drug discovery. Angewandte Chemie-International Edition, 47, 5718–5738. DOI: 10.1002/anie.200700724. http://dx.doi.org/10.1002/anie.200700724CrossrefWeb of ScienceGoogle Scholar

  • [28] Sant, S., Thommes, M., & Hildgen, P. (2008). Microporous structure and drug release kinetics of polymeric nanoparticles. Langmuir, 24, 280–287. DOI: 10.1021/la702244w. http://dx.doi.org/10.1021/la702244wWeb of ScienceCrossrefGoogle Scholar

  • [29] Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). A smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394. http://dx.doi.org/10.1021/jp1111394CrossrefWeb of ScienceGoogle Scholar

  • [30] Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901530r. http://dx.doi.org/10.1021/ma901530rWeb of ScienceCrossrefGoogle Scholar

  • [31] Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106. http://dx.doi.org/10.1002/adma.200802106CrossrefWeb of ScienceGoogle Scholar

  • [32] Stella, V. J., Lee, H. K., & Thompson, D. O. (1995). The effect of SBE4-β-cd on i.v. methylprednisolone pharmacokinetics in rats: Comparison to a co-solvent solution and two watersoluble prodrugs. International Journal of Pharmaceutics, 120, 189–195. DOI: 10.1016/0378-5173(94)00404-S. http://dx.doi.org/10.1016/0378-5173(94)00404-SCrossrefGoogle Scholar

  • [33] Tan, H., Ramirez, C. M., Miljkovic, N., Li, H., Rubin, J. P., & Marra, K. G. (2009). Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 30, 6844–6853. DOI: 10.1016/J.Biomaterials.2009.08.058. http://dx.doi.org/10.1016/j.biomaterials.2009.08.058CrossrefWeb of ScienceGoogle Scholar

  • [34] Tang, Y., Zhao, Y., Li, Y., & Du, Y. (2010). A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polymer Bulletin, 64, 791–804. DOI: 10.1007/s00289-009-0214-0. http://dx.doi.org/10.1007/s00289-009-0214-0CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2011-09-28

Published in Print: 2011-12-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-011-0059-5.

Export Citation

© 2011 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in