Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 28, 2011

Polyamine-substituted epoxy-grafted silica for aqueous metal recovery

  • Madjid Hadioui EMAIL logo , Med Mecherri , Rastislav Šípoš , Yan Yvon and Patrick Sharrock
From the journal Chemical Papers

Abstract

Glycidoxypropyltriethoxysilane (GPS) was used as a reactive silane to graft metal- complexing ligands onto silica gel in aqueous media under mild conditions. The synthesis entailed the reaction of GPS with silica gel, followed by grafting polyamine onto the epoxy functional group. GPS was added to silica gel in ethanol with 5 vol. % water and the mixture was air-dried for 24 h. Subsequently, excess amounts of polyamines: triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine were individually added to the silanised silica, followed by solvent evaporation and ovendrying at 60°C. The ligand-grafted silica gel particles showed a rapid heavy metal uptake in batch or flow-through experiments with capacities reaching 0.1 mmol g−1 for copper, zinc, cadmium, or lead ions. Columns packed with the modified particles could be readily regenerated by acid-washing with only a small decrease in activity. The particles could be used for the colourimetric detection of heavy metal pollution or for pre-concentration for analytical purposes. Competition between Cu2+, Zn2+, Pb2+, and Cd2+ ions for the three synthesised silica showed that Cu2+ ions were adsorbed more strongly than the other metal ions. The general method developed can be applied to graft other molecules with terminal amino groups for other purposes.

[1] Aguado, J., Arsuaga, J. M., Arencibia, A., Lindo, M., & Gascón, V. (2009). Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials, 163, 213–221. DOI: 10.1016/j.jhazmat.2008.06.080. http://dx.doi.org/10.1016/j.jhazmat.2008.06.08010.1016/j.jhazmat.2008.06.080Search in Google Scholar

[2] Akl, M. A. A., Kenawy, I. M. M., & Lasheen, R. R. (2004). Organically modified silica gel and flame atomic absorption spectrometry: employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems. Microchemical Journal, 78, 143–156. DOI: 10.1016/j.microc.2004.03.019. http://dx.doi.org/10.1016/j.microc.2004.03.01910.1016/j.microc.2004.03.019Search in Google Scholar

[3] Arakaki, L. N. H., Augusto Filha, V. L. S., de Sousa, K. S., Aguiar, F. P., da Fonseca, M. G., & Espínola, J. G. P. (2006). Silica gel ethyleneimine and its adsorption capacity for divalent Pb, Cd, and Hg. Thermochimica Acta, 440, 176–180. DOI: 10.1016/j.tca.2005.11.004. http://dx.doi.org/10.1016/j.tca.2005.11.00410.1016/j.tca.2005.11.004Search in Google Scholar

[4] Arakaki, L. N. H., Espínola, J. G. P., da Fonseca, M. G., de Oliveira, S. F., de Sousa, A.N., Arakaki, T., & Airoldi, C. (2004). Thioglycolic acid grafted onto silica gel and its properties in relation to extracting cations from ethanolic solution determined by calorimetric technique. Journal of Colloid and Interface Science, 273, 211–217. DOI: 10.1016/j.jcis.2004.01.006. http://dx.doi.org/10.1016/j.jcis.2004.01.00610.1016/j.jcis.2004.01.006Search in Google Scholar

[5] Arasawa, H., Odawara, C., Yokoyama, R., Saitoh, H., Yamauchia, T., & Tsubokawa, N. (2004). Grafting of zwitteriontype polymers onto silica gel surface and their properties. Reactive and Functional Polymers, 61, 153–161. DOI: 10.1016/j.reactfunctpolym.2004.04.006. http://dx.doi.org/10.1016/j.reactfunctpolym.2004.04.00610.1016/j.reactfunctpolym.2004.04.006Search in Google Scholar

[6] Atia, A. A., Donia, A. M., & Al-Amrani, W. A. (2009). Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups. Chemical Engineering Journal, 150, 55–62. DOI: 10.1016/j.cej.2008.12.004. http://dx.doi.org/10.1016/j.cej.2008.12.00410.1016/j.cej.2008.12.004Search in Google Scholar

[7] Barbette, F., Rascalou, F., Chollet, H., Babouhot, J. L., Denat, F., & Guilard, R. (2004). Extraction of uranyl ions from aqueous solutions using silica-gel-bound macrocycles for alpha contaminated waste water treatment. Analytica Chimica Acta, 502, 179–187. DOI: 10.1016/j.aca.2003.09.065. http://dx.doi.org/10.1016/j.aca.2003.09.06510.1016/j.aca.2003.09.065Search in Google Scholar

[8] Bogya, E.-S., Barabás, R., Csavdári, A., Dejeu, V., & Bâldea, I. (2009). Hydroxyapatite modified with silica used for sorption of copper(II). Chemical Papers, 63, 568–573. DOI: 10.2478/s11696-009-0059-x. http://dx.doi.org/10.2478/s11696-009-0059-x10.2478/s11696-009-0059-xSearch in Google Scholar

[9] Bois, L., Bonhommé, A., Ribes, A., Pais, B., Raffin, G., & Tessier, F. (2003). Functionalized silica for heavy metal ions adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 221, 221–230. DOI: 10.1016/S0927- 7757(03)00138-9. http://dx.doi.org/10.1016/S0927-7757(03)00138-910.1016/S0927-7757(03)00138-9Search in Google Scholar

[10] da Silva, E. L., Martins, A. O., Valentini, A., de Fávere, V. T., Ĉarasek, E. (2004). Application of silica gel organofunctionalized with 3(1-imidazolyl)propyl in an on-line preconcentration system for the determination of copper by FAAS. Talanta, 64, 181–189. DOI: 10.1016/j.talanta.2004.02.003. http://dx.doi.org/10.1016/j.talanta.2004.02.00310.1016/j.talanta.2004.02.003Search in Google Scholar PubMed

[11] Damia, C., Sarda, S., Deydier, E., & Sharrock, P. (2006). Study of two hydroxylapatite/poly(alkoxysilane) implant coatings. Surface and Coatings Technology, 201, 3008–3015. DOI: 10.1016/j.surfcoat.2006.06.025. http://dx.doi.org/10.1016/j.surfcoat.2006.06.02510.1016/j.surfcoat.2006.06.025Search in Google Scholar

[12] Damia, C., & Sharrock, P. (2006). Bioactive coatings obtained at room temperature with hydroxylapatite and polysiloxanes. Materials Letters, 60, 3192–3196. DOI: 10.1016/j.matlet.2006.02.071. http://dx.doi.org/10.1016/j.matlet.2006.02.07110.1016/j.matlet.2006.02.071Search in Google Scholar

[13] de Buyl, F., & Kretschmer, A. (2008). Understanding hydrolysis and condensation kinetics of γ-glycidoxypropyltrimethoxysilane. The Journal of Adhesion, 84, 125–142. DOI: 10.1080/00218460801952809. http://dx.doi.org/10.1080/0021846080195280910.1080/00218460801952809Search in Google Scholar

[14] de la Rosa, G., Gardea-Torresdey, J. L., Peralta-Videa, J. R., Herrera, I., & Contreras, C. (2003). Use of silica-immobilized humin for heavy metal removal from aqueous solution under flow conditions. Bioresource Technology, 90, 11–17. DOI: 10.1016/S0960-8524(03)00099-3. http://dx.doi.org/10.1016/S0960-8524(03)00099-310.1016/S0960-8524(03)00099-3Search in Google Scholar

[15] Delacour, M.-L., Gailliez, E., Bacquet, M., & Morcellet, M. (1999). Poly(ethylenimine) coated onto silica gels: Adsorption capacity toward lead and mercury. Journal of Applied Polymer Science, 73, 899–906. DOI: 10.1002/(SICI)1097-4628(19990808)73:6<899::AID-APP6>3.0.CO;2-O. http://dx.doi.org/10.1002/(SICI)1097-4628(19990808)73:6<899::AID-APP6>3.0.CO;2-O10.1002/(SICI)1097-4628(19990808)73:6<899::AID-APP6>3.0.CO;2-OSearch in Google Scholar

[16] Etienne, M., & Walcarius, A. (2003). Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta, 59, 1173–1188. DOI: 10.1016/S0039-9140(03)00024-9. http://dx.doi.org/10.1016/S0039-9140(03)00024-910.1016/S0039-9140(03)00024-9Search in Google Scholar

[17] Ghoul, M., Bacquet, M., & Morcellet, M. (2003). Uptake of heavy metals from synthetic aqueous solutions using modified PEI—silica gels. Water Research, 37, 729–734. DOI: 10.1016/S0043-1354(02)00410-4. http://dx.doi.org/10.1016/S0043-1354(02)00410-410.1016/S0043-1354(02)00410-4Search in Google Scholar

[18] Huamán Pino, G., Souza de Mesquita, L. M., Torem, M. L., Ŝaavedra Pinto, G. A. (2006). Biosorption of cadmium by green coconut shell powder. Minerals Engineering, 19, 380–387. DOI: 10.1016/j.mineng.2005.12.003. http://dx.doi.org/10.1016/j.mineng.2005.12.00310.1016/j.mineng.2005.12.003Search in Google Scholar

[19] Hughes, M. A., Nielsen, D., Rosenberg, E., Gobetto, R., Viale, A., Burton, S. D., & Ferel, J. (2006). Structural investigations of silica polyamine composites: Surface coverage, metal ion coordination, and ligand modification. Industrial & Engineering Chemistry Research, 45, 6538–6547. DOI: 10.1021/ie0601448. http://dx.doi.org/10.1021/ie060144810.1021/ie0601448Search in Google Scholar

[20] Jacobsen, E., & Schrøder, K. (1962). Polarography of lead and cadmium complexes with tetraethylenepentamine and pentaethylenehexamine. Acta Chemica Scandinavica, 16, 1393–1396. DOI: 10.3891/acta.chem.scand.16-1393. http://dx.doi.org/10.3891/acta.chem.scand.16-139310.3891/acta.chem.scand.16-1393Search in Google Scholar

[21] Jal, P. K., Patel, S., & Mishra, B. K. (2004). Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta, 62, 1005–1028. DOI: 10.1016/j.talanta.2003.10.028. http://dx.doi.org/10.1016/j.talanta.2003.10.02810.1016/j.talanta.2003.10.028Search in Google Scholar

[22] Jonassen, H. B., Bertrand, J. A., Groves, F. R., Jr., & Stearns, R. I. (1957). Inorganic complex compounds containing polydentate groups. XVI. A study of the complex ions formed by the copper(II) ion with triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine. Journal of the American Chemical Society, 79, 4279–4282. DOI: 10.1021/ja01573a011. http://dx.doi.org/10.1021/ja01573a01110.1021/ja01573a011Search in Google Scholar

[23] Lee, B., Kim, Y., Lee, H., & Yi, J. (2001). Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents. Microporous and Mesoporous Materials, 50, 77–90. DOI: 10.1016/S1387-1811(01)00437-1. http://dx.doi.org/10.1016/S1387-1811(01)00437-110.1016/S1387-1811(01)00437-1Search in Google Scholar

[24] Lee, T., Park, J.-W., & Lee, J.-H. (2004). Waste green sands as reactive media for the removal of zinc from water. Chemosphere, 56, 571–581. DOI: 10.1016/j.chemosphere.2004.04.037. http://dx.doi.org/10.1016/j.chemosphere.2004.04.03710.1016/j.chemosphere.2004.04.037Search in Google Scholar PubMed

[25] Liu, C., Bai, R., & Ly, Q. S. (2008). Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Research, 42, 1511–1522. DOI: 10.1016/j.watres.2007.10.031. http://dx.doi.org/10.1016/j.watres.2007.10.03110.1016/j.watres.2007.10.031Search in Google Scholar PubMed

[26] Liu, H., Yang, F., Zheng, Y., Kang, J., Qu, J., & Chen, J. P. (2011). Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Research, 45, 145–154. DOI: 10.1016/j.watres.2010.08.017. http://dx.doi.org/10.1016/j.watres.2010.08.01710.1016/j.watres.2010.08.017Search in Google Scholar PubMed

[27] Mahmoud, M. E., El-Essawi, M. M., Kholeif, S. A., & Fathalla, E. M. I. (2004). Aspects of surface modification, structure characterization, thermal stability and metal selectivity properties of silica gel phases-immobilized-amine derivatives. Analytica Chimica Acta, 525, 123–132. DOI: 10.1016/j.aca.2004.06.032. http://dx.doi.org/10.1016/j.aca.2004.06.03210.1016/j.aca.2004.06.032Search in Google Scholar

[28] Péré, E., Cardy, H., Latour, V., & Lacombe, S. (2005). Lowtemperature reaction of trialkoxysilanes on silica gel: a mild and controlled method for modifying silica surfaces. Journal of Colloid and Interface Science, 281, 410–416. DOI: 10.1016/j.jcis.2004.08.061. http://dx.doi.org/10.1016/j.jcis.2004.08.06110.1016/j.jcis.2004.08.061Search in Google Scholar PubMed

[29] Reilley, C. N., & Holloway, J. H. (1958). The stability of metaltetraethylenepentamine complexes. Journal of the American Chemical Society, 80, 2917–2919. DOI: 10.1021/ja01545a001. http://dx.doi.org/10.1021/ja01545a00110.1021/ja01545a001Search in Google Scholar

[30] Reilley, C. N., & Schmid, R. W. (1957). Stability of metaltriethylenetetramine complexes. Journal of the Elisha Mitchell Scientific Society, 73, 279–284. Search in Google Scholar

[31] Rether, A., & Schuster, M. (2003). Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. Reactive and Functional Polymers, 57, 13–21. DOI: 10.1016/j.reactfunctpolym.2003.06.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2003.06.00210.1016/j.reactfunctpolym.2003.06.002Search in Google Scholar

[32] Sales, J. A. A., & Airoldi, C. (2005). Calorimetric investigation of metal ion adsorption on 3-glycidoxypropyltrimethylsiloxane + propane-1,3-diamine immobilized on silica gel. Thermochimica Acta, 427, 77–83. DOI: 10.1016/j.tca.2004.08.015. http://dx.doi.org/10.1016/j.tca.2004.08.01510.1016/j.tca.2004.08.015Search in Google Scholar

[33] Sales, J. A. A., Faria, F. P., Prado, A. G. S., & Airoldi, C. (2004). Attachment of 2-aminomethylpyridine molecule onto grafted silica gel surface and its ability in chelating cations. Polyhedron, 23, 719–725. DOI: 10.1016/j.poly.2003.11.051. http://dx.doi.org/10.1016/j.poly.2003.11.05110.1016/j.poly.2003.11.051Search in Google Scholar

[34] Santos Yabe, M. J., & de Oliveira, E. (2003). Heavy metals removal in industrial effluents by sequential adsorbent treatment. Advances in Environmental Research, 7, 263–272. DOI: 10.1016/S1093-0191(01)00128-9. http://dx.doi.org/10.1016/S1093-0191(01)00128-910.1016/S1093-0191(01)00128-9Search in Google Scholar

[35] Soliman, E. M., Mahmoud, M. E., & Ahmed, S. A. (2001). Synthesis, characterization and structure effects on selectivity properties of silica gel covalently bonded diethylenetriamine mono- and bis-salicyaldehyde and naphthaldehyde Schiff’s bases towards some heavy metal ions. Talanta, 54, 243–253. DOI: 10.1016/S0039-9140(00)00648-2. http://dx.doi.org/10.1016/S0039-9140(00)00648-210.1016/S0039-9140(00)00648-2Search in Google Scholar

[36] Soliman, E. M., Saleh, M. B., & Ahmed, S. A. (2004). New solid phase extractors for selective separation and preconcentration of mercury(II) based on silica gel immobilized aliphatic amines 2-thiophenecarboxaldehyde Schiff’s bases. Analytica Chimica Acta, 523, 133–140. DOI: 10.1016/j.aca.2004.07.002. http://dx.doi.org/10.1016/j.aca.2004.07.00210.1016/j.aca.2004.07.002Search in Google Scholar

[37] Tabushi, I., Shimizu, N., Sugimoto, T., Shiozuka, M., & Yamamura, K. (1977). Cyclodextrin flexibly capped with metal ion. Journal of the American Chemical Society, 99, 7100–7102. DOI: 10.1021/ja00463a073. http://dx.doi.org/10.1021/ja00463a07310.1021/ja00463a073Search in Google Scholar

[38] Venkatesan, K. A., Srinivasan, T. G., & Vasudeva Rao, P. R. (2001). Cobalt-extraction studies on dithiocarbamate grafted on silica gel surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180, 277–284. DOI: 10.1016/S0927-7757(00)00769-X. http://dx.doi.org/10.1016/S0927-7757(00)00769-X10.1016/S0927-7757(00)00769-XSearch in Google Scholar

[39] Wheatley, J. B., & Schmidt, D. E., Jr. (1999). Salt-induced immobilization of affinity ligands onto epoxide-activated supports. Journal of Chromatography A, 849, 1–12. DOI: 10.1016/S0021-9673(99)00484-7. http://dx.doi.org/10.1016/S0021-9673(99)00484-710.1016/S0021-9673(99)00484-7Search in Google Scholar

[40] Wingenfelder, U., Nowack, B., Furrer, G., & Schulin, R. (2005). Adsorption of Pb and Cd by amine-modified zeolite. Water Research, 39, 3287–3297. DOI: 10.1016/j.watres.2005.05.017. http://dx.doi.org/10.1016/j.watres.2005.05.01710.1016/j.watres.2005.05.017Search in Google Scholar PubMed

[41] Zhang, Y., Qu, R., Sun, C., Chen, H., Wang, C., Ji, C., Yin, P., Sun, Y., Zhang, H. & Niu, Y. (2009). Comparison of synthesis of chelating resin silica-gel-supported diethylenetriamine and its removal properties for transition metal ions. Journal of Hazardous Materials, 163, 127–135. DOI: 10.1016/j.jhazmat.2008.06.070. http://dx.doi.org/10.1016/j.jhazmat.2008.06.07010.1016/j.jhazmat.2008.06.070Search in Google Scholar PubMed

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0067-5/html
Scroll to top button