Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

See all formats and pricing
More options …
Volume 65, Issue 6


2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris

Katarína Kráľová / František Šeršeň / Věra Klimešová
  • Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, CZ-501 65, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karel Waisser
  • Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, CZ-501 65, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-28 | DOI: https://doi.org/10.2478/s11696-011-0082-6


The inhibition of the oxygen evolution rate (OER) in Chlorella vulgaris by 2-alkylsulphanyl-4-pyridinecarbothioamides (APCTs; alkyl = methyl up to hexadecyl) was studied. APCTs were found to inhibit photosynthetic electron transport (PET) which resulted in the inhibition of OER in algae. The inhibitory activity of APCTs was highly dependent on the alkyl chain length of the 2-alkylsulphanyl substituent and the corresponding dependence showed a bilinear course with the decyl derivative as being the most active inhibitor. Using EPR spectroscopy, the site of APCT action in the algal photosynthetic apparatus was determined. It was confirmed that APCT interacted mainly with the D. intermediate, i.e. with tyrosine radical (TyrD) occurring at the 161st position in D2 protein which is situated on the donor side of photosystem 2.

Keywords: alkyl length; Chlorella vulgaris; EPR spectroscopy; photosynthetic electron transport; inhibition; oxygen electrode

  • [1] Balgavy, P., & Devínsky, F. (1996). Cut-off effects in biological activities of surfactants. Advances in Colloid and Interface Science, 66, 23–63. DOI: 10.1016/0001-8686(96)00295-3. http://dx.doi.org/10.1016/0001-8686(96)00295-3CrossrefGoogle Scholar

  • [2] Bartoš, J., Berková, E., & Šetlík, I. (1975). A versatile chamber for gas exchange measurements in suspension of algae and chloroplasts. Photosynthetica, 9, 395–406. Google Scholar

  • [3] Chioua, M., Samadi, A., Soriano, E., Lozach, O., Meijer, L., & Marco-Contelles, J. (2009). Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 4566–4569. DOI: 10.1016/j.bmcl.2009.06.099. http://dx.doi.org/10.1016/j.bmcl.2009.06.099CrossrefGoogle Scholar

  • [4] Debus, R. J., Barry, B. A., Babcock, G. T., & McIntosh, L. (1988a). Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proceedings of the National Academy of Sciences of the United States of America, 85, 427–430. http://dx.doi.org/10.1073/pnas.85.2.427Google Scholar

  • [5] Debus, R. J., Barry, B. A., Sithole, I., Babcock, G. T., & McIntosh, L. (1988b). Directed mutagenesis indicates that donor to P 680+ in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry, 27, 9071–9074. DOI: 10.1021/bi00426a001. http://dx.doi.org/10.1021/bi00426a001CrossrefGoogle Scholar

  • [6] Hoff, A. J. (1979). Applications of ESR in photosynthesis. Physics Reports, 54, 75–200. DOI: 10.1016/0370-1573(79)90016-4. http://dx.doi.org/10.1016/0370-1573(79)90016-4CrossrefGoogle Scholar

  • [7] Klimešová, V., Otčenášek, M., & Waisser, K. (1996a). Potential antifungal agents. Synthesis and activity of 2-alkylthiopyridine-4-carbothioamides. European Journal of Medicinal Chemistry, 31, 389–395. DOI: 10.1016/0223-5234(96)89165-3. http://dx.doi.org/10.1016/0223-5234(96)89165-3Web of ScienceCrossrefGoogle Scholar

  • [8] Klimešová, V., Svoboda, M., Waisser, K., Macháček, M., Buchta, V., & Odlerová, Ž. (1996b). Research on antifungal and antimycobacterial agents. Synthesis and activity of 4-alkylthiopyridine-2-carbothioamides. Archiv der Pharmazie, 329, 438–442. DOI: 10.1002/ardp.19963291003. http://dx.doi.org/10.1002/ardp.19963291003CrossrefGoogle Scholar

  • [9] Kráľová, K., Loos, D., Šeršeň F., & Sidóová, E. (1994). QSAR study concerning photosynthesis inhibition in algae and plant chloroplasts by 2-alkylthio-6-R-benzothiazoles. I. 2-Alkylthio-6-aminobenzothiazoles, 3-(2-alkyltio-6-benzothiazolylaminomethyl)-2-benzothiazolinethiones, 3-(2-alkylthio-6-benzothiazolyl-aminomethyl)-6-bromo-2-benzothiazolinones. Chemical Papers, 48, 198–202. Google Scholar

  • [10] Kráľová, K., Miletín, M., & Doležal, M. (2001). Inhibition of oxygen evolution rate in freshwater algae Chlorella vulgaris by some anilides of substituted pyridine-4-carboxylic acids. Chemical Papers, 55, 251–253. Google Scholar

  • [11] Kráľová, K., Šeršeň, F., Gašparová, R., & Lácová, M. (1998c). Effect of chromone-substituted benzothiazolium halides on photosynthetic processes. Chemical Papers, 52, 776–779. Google Scholar

  • [12] Kráľová, K., Šeršeň, F., Klimešová, V., & Waisser, K. (1997). Effect of 2-alkylthio-4-pyridinecarbothiamides on photosynthetic electron transport in spinach chloroplasts. Collection of Czechoslovak Chemical Communications, 62, 516–520. DOI: 10.1135/cccc19970516. http://dx.doi.org/10.1135/cccc19970516CrossrefGoogle Scholar

  • [13] Kráľová, K., Šeršeň, F., & Melník, M. (1998b). Inhibition of photosynthesis in Chlorella vulgaris by Cu(II) complexes with biologically active ligands. Journal of Trace and Microprobe Techniques, 16, 491–500. Google Scholar

  • [14] Kráľová, K., Šeršeň, F., Miletín, M., & Hartl, J. (1998a). Inhibition of photosynthetic electron transport by some anilides of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts. Chemical Papers, 52, 52–55. Google Scholar

  • [15] Kráľová, K., Šeršeň, F., & Sidóová, E. (1992). Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chemical Papers, 46, 348–350. Google Scholar

  • [16] Krauze, A., Gērmane, S., Eberliņš, O., Šturms, I., Klusā, V., & Duburs, G. (1999). Dervivatives of 3-cyano-6-phenyl-4-(3′-pyridyl)-pyridine-2(1H)-thione and their neurotropic activity. European Journal of Medicinal Chemistry, 34, 301–310. DOI: 10.1016/S0223-5234(99)80081-6. http://dx.doi.org/10.1016/S0223-5234(99)80081-6CrossrefGoogle Scholar

  • [17] Okazaki, K., Maeda, T., Nagamune, H., & Kourai, H. (1997). Antibacterial characteristics of N-alkyl-2-alkylthiopyridinium and N-alkyl-4-alkylthiopyridinium salts. Japanese Journal of Toxicology and Environmental Health, 43, 251–260. http://dx.doi.org/10.1248/jhs1956.43.251Google Scholar

  • [18] Ren, Q., Mo, W., Gao, L., He, H., & Gu, Y. (2010). Facile synthesis and herbicidal activity of novel multisubstituted pyridine derivatives. Journal of Heterocyclic Chemistry, 47, 171–178. DOI: 10.1002/jhet.296. CrossrefGoogle Scholar

  • [19] Svensson, B., Vass, I., & Styring, S. (1991). Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Zeitschrift für Naturforschung C, 46c, 765–776. Google Scholar

  • [20] Waisser, K., Klimešová, V., & Buchta, V. (1996a). New groups of potential antifungal agents: 2-Alkylthio-4-pyridinecarbothioamides. Folia Pharmaceutica Universitatis Carolinae, 20, 53–57. Google Scholar

  • [21] Waisser, K., Klimešová, V., & Odlerová, Ž. (1996b). Relationships between the chemical structure of substances and their antimycobacterial activity to atypical strains. VII. 2-Alkylthio-4-pyridinecarbothioamides. Folia Pharmaceutica Universitatis Carolinae, 20, 59–62. Google Scholar

About the article

Published Online: 2011-09-28

Published in Print: 2011-12-01

Citation Information: Chemical Papers, Volume 65, Issue 6, Pages 909–912, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-011-0082-6.

Export Citation

© 2011 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in