Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 65, Issue 6

Issues

Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis

Linda Zaoralkova
  • Laboratory of Atomic Spectrochemistry, Department of Chemistry, Masaryk University, Brno, Kotlářská 2, CZ 611 37, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ales Hrdlicka
  • Laboratory of Atomic Spectrochemistry, Department of Chemistry, Masaryk University, Brno, Kotlářská 2, CZ 611 37, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vitezslav Otruba
  • Laboratory of Atomic Spectrochemistry, Department of Chemistry, Masaryk University, Brno, Kotlářská 2, CZ 611 37, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Sulovsky
  • Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Kotlářská 2, CZ 611 37, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicole Gilon
  • Laboratoire des Sciences Analytiques, UMR 5180, Université Claude Bernard — Lyon I, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Detlef Günther
  • Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang Pauli Str. 10, CH-8093, Zürich, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viktor Kanicky
  • Laboratory of Atomic Spectrochemistry, Department of Chemistry, Masaryk University, Brno, Kotlářská 2, CZ 611 37, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-28 | DOI: https://doi.org/10.2478/s11696-011-0085-3

Abstract

The applicability of laser ablation (LA) inductively coupled plasma (ICP) spectrometry for assessing elemental distributions in layered ceramics was investigated and compared with electron probe microanalysis (EPMA). Ordinary glazed wall tiles were employed as model specimens due to their defined structure and composition. They were used for calibration in the analysis of ancient pottery. A qualitative depth profile was acquired by single-spot laser drilling perpendicular to coatings with a Nd:YAG (1064 nm) laser coupled with an ICP optical emission spectrometer (OES). The lower lateral resolution associated with the laser spot diameter of 1.0 mm led to smoothing of the depth profile due to the averaging of local irregularities. In addition, transverse line scans by ablation across the tile section using an ArF* (193 nm) laser coupled with an ICP mass spectrometer (MS) were performed. LA-ICP-OES depth profiles and LA-ICP-MS transverse scans were validated by EPMA section scans and 2D back-scattered electrons images. The LA-ICP-OES acquisition was less dependent on sample surface and layer irregularities, whereas the transverse line scan over the tile section with the small-spot beam offered insight into the micromorphology of the individual layer. The combined approach revealed the occurrence of individual mineral grains, micro-heterogeneities and the character of interfaces between layers.

Keywords: depth profile; surface analysis; inductively coupled plasma mass spectrometry; inductively coupled plasma optical spectrometry; laser ablation; electron probe X-ray microanalysis; layered ceramics

  • [1] Aguirre, B., Vemuri, R. S., Zubia, D., Engelhard, M. H., Shutthananadan, V., Kamala Bharathi, K., & Ramana, C. V. (2011). Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using a HfO2 ceramic target. Applied Surface Science, 257, 2197–2202. DOI: 10.1016/j.apsusc.2010.09.072. http://dx.doi.org/10.1016/j.apsusc.2010.09.072Google Scholar

  • [2] Als-Nielsen, J., & McMorrow, D. (2001). Elements of modern X-ray physics. Chichester, UK: Wiley. Google Scholar

  • [3] Anglos, D. (2001). Laser-induced breakdown spectroscopy in art and archaeology. Applied Spectroscopy, 55, 186A–205A. DOI: 10.1366/0003702011952398. http://dx.doi.org/10.1366/0003702011952398CrossrefGoogle Scholar

  • [4] Armitage, R. A., Minc, L., Hill, D. V., & Hurry, S. D. (2006). Characterization of bricks and tiles from the 17th-century brick Chapel, St. Mary’s City, Maryland. Journal of Archaeological Science, 33, 615–627. DOI: 10.1016/j.jas.2005.09.016. http://dx.doi.org/10.1016/j.jas.2005.09.016CrossrefGoogle Scholar

  • [5] Baker, S. A., Dellavecchia, M. J., Smith, B. W., & Winefordner, J. D. (1997). Analysis of silicon nitride bearings with laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 355, 113–119. DOI: 10.1016/S0003-2670(97)00449-2. http://dx.doi.org/10.1016/S0003-2670(97)00449-2CrossrefGoogle Scholar

  • [6] Beck, M. E., & Neff, H. (2007). Hohokam and Patayan interaction in southwestern Arizona: evidence from ceramic compositional analyse. Journal of Archaeological Science, 34, 289–300. DOI: 10.1016/j.jas.2006.05.003. http://dx.doi.org/10.1016/j.jas.2006.05.003CrossrefGoogle Scholar

  • [7] Becker, J. S. (2002). Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science. Spectrochimica Acta Part B, 57, 1805–1820. DOI: 10.1016/S0584-8547(02)00213-6. http://dx.doi.org/10.1016/S0584-8547(02)00213-6CrossrefGoogle Scholar

  • [8] Becker, J. S. (2007). Inorganic mass spectrometry: Principles and applications. Chichester, UK: Wiley. Google Scholar

  • [9] Bertin, E. P. (1978). Introduction to X-ray spectrometric analysis. New York, NY, USA: Plenum Press. Google Scholar

  • [10] Bi, M., Ruiz, A. M., Smith, B. W., & Winefordner, J. D. (2000). Study of solution calibration of NIST soil and glass samples by laser ablation inductively coupled plasma mass spectrometry. Applied Spectroscopy, 54, 639–644. DOI: 10.1366/0003702001950030. http://dx.doi.org/10.1366/0003702001950030CrossrefGoogle Scholar

  • [11] Bian, Q. Z., Koch, J., Lindner, H., Berndt, H., Hergenröder, R., & Niemax, K. (2005). Non-matrix matched calibration using near-IR femtosecond laser ablation inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 20, 736–740. DOI: 10.1039/B500632E. http://dx.doi.org/10.1039/b500632eCrossrefGoogle Scholar

  • [12] Bleiner, D., Plotnikov, A., Vogt, C., Wetzig, K., & Günther, D. (2000). Depth profile analysis of various titanium based coatings on steel and tungsten carbide using laser ablation inductively coupled plasma — “time of flight” mass spectrometry. Fresenius Journal of Analytical Chemistry, 368, 221–226. DOI: 10.1007/s002160000417. http://dx.doi.org/10.1007/s002160000417CrossrefGoogle Scholar

  • [13] Borisov, O. V., Mao, X., & Russo, R. E. (2000). Effects of crater development on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B, 55, 1693–1704. DOI: 10.1016/S0584-8547(00)00272-X. http://dx.doi.org/10.1016/S0584-8547(00)00272-XCrossrefGoogle Scholar

  • [14] Bowen, D. K., & Tanner, B. K. (1998). High resolution X-ray diffractometry and topography. London, UK: Taylor & Francis. Google Scholar

  • [15] Briggs, D., & Grant, J. T. (Eds.) (2003). Surface analysis by Auger and X-ray photoelectron spectroscopy. Chichester, UK: IM Publications. Google Scholar

  • [16] Carter, S., Fisher, A. S., Goodall, P. S., Hinds, M. W., Lancaster, S., & Shore, S. (2010). Atomic spectrometry update. Industrial analysis: metals, chemicals and advanced materials. Journal of Analytical Atomic Spectrometry, 25, 1808–1858. DOI: 10.1039/c005533f. http://dx.doi.org/10.1039/c005533fCrossrefGoogle Scholar

  • [17] Cecil, L. G., & Neff, H. (2006). Postclassic Maya slips and paints and their relationship to socio-political groups in El Petén, Guatemala. Journal of Archaeological Science, 33, 1482–1491. DOI: 10.1016/j.jas.2006.02.005. http://dx.doi.org/10.1016/j.jas.2006.02.005CrossrefGoogle Scholar

  • [18] Ciliberto, E., & Spoto, G. (2000). Modern analytical methods in art and archaeology (Chemical analysis: A series of monographs on analytical chemistry and its applications, Vol. 155). New York, NY, USA: Wiley. Google Scholar

  • [19] Cochrane, E. E., & Neff, H. (2006). Investigating compositional diversity among Fijian ceramics with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS): implications for interaction studies on geologically similar islands. Journal of Archaeological Science, 33, 378–390. DOI: 10.1016/j.jas.2005.08.003. http://dx.doi.org/10.1016/j.jas.2005.08.003CrossrefGoogle Scholar

  • [20] Cotte, M., Susini, J., Dik, J., & Janssens, K. (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: Looking back and looking forward. Accounts of Chemical Research, 43, 705–714. DOI: 10.1021/ar900199m. http://dx.doi.org/10.1021/ar900199mCrossrefGoogle Scholar

  • [21] Cotte, M., Szlachetko, J., Lahlil, S., Salomé, M., Solé, V. A., Biron, I., & Susini, J. (2011). Coupling a wavelength dispersive spectrometer with a synchrotron-based X-ray microscope: A winning combination for micro-X-ray fluorescence and micro-XANES analyses of complex artistic materials. Journal of Analytical Atomic Spectrometry, 26, 1051–1059. DOI: 10.1039/c0ja00217h. http://dx.doi.org/10.1039/c0ja00217hCrossrefGoogle Scholar

  • [22] Čtvrtníčková, T., Fortes, F. J., Cabalín, L. M., Kanický, V., & Laserna, J. J. (2009). Depth profiles of ceramic tiles by using orthogonal double-pulse laser induced breakdown spectrometry. Surface and Interface Analysis, 41, 714–719. DOI: 10.1002/sia.3077. http://dx.doi.org/10.1002/sia.3077CrossrefGoogle Scholar

  • [23] De Giacomo, A., & De Pascale, O. (2004). Laser induced plasma spectroscopy by air spark ablation. Thin Solid Films, 453–454, 328–333. DOI: 10.1016/j.tsf.2003.11.095. http://dx.doi.org/10.1016/j.tsf.2003.11.095CrossrefGoogle Scholar

  • [24] De Maeyer-Worobiec, A., Dekov, V. M., Laane, R. W. P. M., & Van Grieken, R. (2009). EPXMA survey of shelf sediments (Southern Bight, North Sea): A glance beyond the XRD-invisible. Microchemical Journal, 91, 21–31. DOI: 10.1016/j.microc.2008.07.001. http://dx.doi.org/10.1016/j.microc.2008.07.001CrossrefGoogle Scholar

  • [25] Drozdov, M. N., Drozdov, Y. N., Barysheva, M. M., Polkovnikov, V. N., & Chkhalo, N. I. (2010). Use of cluster secondary ions for minimization of matrix effects in the SIMS depth profiling of La/B4C multilayer nanostructures. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 4, 807–810. DOI: 10.1134/S1027451010050216. http://dx.doi.org/10.1134/S1027451010050216CrossrefGoogle Scholar

  • [26] Duwe, S., & Neff, H. (2007). Glaze and slip pigment analyses of Pueblo IV period ceramics from east-central Arizona using time of flight-laser ablation-inductively coupled plasma-mass spectrometry (TOF-LA-ICP-MS). Journal of Archaeological Science, 34, 403–414. DOI: 10.1016/j.jas.2006.06.001. http://dx.doi.org/10.1016/j.jas.2006.06.001CrossrefGoogle Scholar

  • [27] Eggins, S. M., Knisley, L. P. J., & Shelley, J. M. G. (1998). Deposition and elemental fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Applied Surface Science, 127–129, 278–286. DOI: 10.1016/S0169-4332(97)00643-0. http://dx.doi.org/10.1016/S0169-4332(97)00643-0CrossrefGoogle Scholar

  • [28] EVISA (European Virtual Institute for Speciation Analysis) (2003–2010). Instrument database: Varian Inc. — Vista-PRO simultaneous ICP-OES. Retrieved July 28, 2011, from http://www.speciation.net/Database/Instruments/Varian-Inc/VistaPRO-Simultaneous-ICPOES-;i245 Google Scholar

  • [29] Fitzpatrick, S. M., Takamiya, H., Neff, H., & Dickinson, W. R. (2006). Compositional analysis of Yayoi-Heian period ceramics from Okinawa: Examining the potential for provenance study. Geoarchaeology: An International Journal, 21, 803–822. DOI: 10.1002/gea.20140. http://dx.doi.org/10.1002/gea.20140CrossrefGoogle Scholar

  • [30] Günther, D., Frischknecht, R., Heinrich, C. A., & Kahlert, H.-J. (1997). Capabilities of an argon fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. Journal of Analytical Atomic Spectrometry, 12, 939–944. DOI: 10.1039/A701423F. http://dx.doi.org/10.1039/a701423fCrossrefGoogle Scholar

  • [31] Günther, D., Quadt, A., Wirz, R., Cousin, H., & Dietrich, V. J. (2001). Elemental analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards. Microchimica Acta, 136, 101–107. DOI: 10.1007/s006040170038. http://dx.doi.org/10.1007/s006040170038CrossrefGoogle Scholar

  • [32] Halicz, L., & Günther, D. (2004). Quantitative analysis of silicates using LA-ICP-MS with liquid calibration. Journal of Analytical Atomic Spectrometry, 19, 1539–1545. DOI: 10.1039/B410132D. http://dx.doi.org/10.1039/b410132dCrossrefGoogle Scholar

  • [33] Holá, M., Kanický, V., Mermet, J.-M., & Otruba, V. (2003). Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry. Analytical & Bioanalytical Chemistry, 377, 1165–1174. DOI: 10.1007/s00216-003-2234-1. http://dx.doi.org/10.1007/s00216-003-2234-1CrossrefGoogle Scholar

  • [34] Izmer, A. V., Zoriy, M. V., Pickhardt, C., Quadakkers, W., Shemet, V., Singheiser, L., & Becker, J. S. (2005). LA-ICPMS studies of cross section of NiCrAlY-based coatings on high-temperature alloys. Journal of Analytical Atomic Spectrometry, 20, 918–923. DOI: 10.1039/B505459C. http://dx.doi.org/10.1039/b505459cCrossrefGoogle Scholar

  • [35] Kanicky, V., & Mermet, J.-M. (1996). Selection of internal standards for analysis of silicate rocks and limestones by laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES). Fresenius Journal of Analytical Chemistry, 355, 887–888. DOI: 10.1007/s0021663550887. CrossrefGoogle Scholar

  • [36] Kanicky, V., & Mermet, J.-M. (1997). Selection of internal standards for the determination of major and minor elements in silicate rocks and limestones by laser ablation inductively coupled plasma atomic emission spectrometry. Applied Spectroscopy, 51, 332–336. DOI: 10.1366/0003702971940440. http://dx.doi.org/10.1366/0003702971940440CrossrefGoogle Scholar

  • [37] Kanicky, V., Novotny, I., Musil, J., & Mermet, J.-M. (1997). Depth profiling of thick layers of graded metal-zirconia ceramic coatings using laser ablation inductively coupled plasma atomic emission spectrometry. Applied Spectroscopy, 51, 1042–1046. DOI: 10.1366/0003702971941467. http://dx.doi.org/10.1366/0003702971941467CrossrefGoogle Scholar

  • [38] Kanicky, V., Otruba, V., & Mermet, J.-M. (2000a). Analysis of tungsten carbide coatings by UV laser ablation inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B, 55, 575–586. DOI: 10.1016/S0584-8547(00)00167-1. http://dx.doi.org/10.1016/S0584-8547(00)00167-1CrossrefGoogle Scholar

  • [39] Kanický, V., Otruba, V., & Mermet, J.-M. (2000b). Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B, 55, 1601–1610. DOI: 10.1016/S0584-8547(00)00266-4. http://dx.doi.org/10.1016/S0584-8547(00)00266-4CrossrefGoogle Scholar

  • [40] Kanický, V., Otruba, V., & Mermet, J.-M. (2001a). Calibration graphs for Ti, Ta and Nb in sintered tungsten carbide by infrared laser ablation inductively coupled plasma atomic emission spectrometry. Fresenius Journal of Analytical Chemistry, 371, 934–938. DOI: 10.1007/s002160101041. http://dx.doi.org/10.1007/s002160101041CrossrefGoogle Scholar

  • [41] Kanický, V., Otruba, V., Novotný, K., Musil, P., & Mermet, J.-M. (2001b). Calibration graphs for steels by IR laser ablation inductively coupled plasma atomic emission spectrometry. Fresenius Journal of Analytical Chemistry, 370, 387–392. DOI: 10.1007/s002160100805. http://dx.doi.org/10.1007/s002160100805CrossrefGoogle Scholar

  • [42] Knappett, C., Pirrie, D., Power, M. R., Nikolakopoulou, I., Hilditch, J., & Rollinson, G. K. (2011). Mineralogical analysis and provenancing of ancient ceramics using automated SEM-EDS analysis (QEMSCAN®): a pilot study on LB I pottery from Akrotiri, Thera. Journal of Archaeological Science, 38, 219–232. DOI: 10.1016/j.jas.2010.08.022. http://dx.doi.org/10.1016/j.jas.2010.08.022CrossrefGoogle Scholar

  • [43] Kuzuya, M., Murakami, M., & Maruyama, N. (2003). Quantitative analysis of ceramics by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B, 58, 957–965. DOI: 10.1016/S0584-8547(03)00011-9. http://dx.doi.org/10.1016/S0584-8547(03)00011-9CrossrefGoogle Scholar

  • [44] Lazic, V., Colao, F., Fantoni, R., Palucci, A., Spizzichino, V., Borgia, I., Brunetti, B. G., & Sgamellotti, A. (2003). Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy. Journal of Cultural Heritage, 4, 303s–308s. DOI: 10.1016/S1296-2074(02)01212-8. http://dx.doi.org/10.1016/S1296-2074(02)01212-8CrossrefGoogle Scholar

  • [45] Leach, A. M., & Hieftje, G. M. (2001). Standardless semiquan-titative analysis of metals using single-shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Analytical Chemistry, 73, 2959–2967. DOI: 10.1021/ac0012 72n. http://dx.doi.org/10.1021/ac001272nCrossrefGoogle Scholar

  • [46] López, A. J., Nicolás, G., Mateo, M. P., Piñón, V., Tobar, M. J., & Ramil, A. (2005). Compositional analysis of Hispanic Terra Sigillata by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B, 60, 1149–1154. DOI: 10.1016/j.sab.2005.05.009. http://dx.doi.org/10.1016/j.sab.2005.05.009CrossrefGoogle Scholar

  • [47] Luesaiwong, W., & Marcus, R. K. (2004). Depth-resolved analysis of Ni-P plated aluminium hard disks by radiofrequency glow discharge optical emission spectroscopy (rf-GD-OES). Journal of Analytical Atomic Spectrometry, 19, 345–353. DOI: 10.1039/B309396D. http://dx.doi.org/10.1039/b309396dCrossrefGoogle Scholar

  • [48] Mank, A. J. G., & Mason, P. R. D. (1999). A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples. Journal of Analytical Atomic Spectrometry, 14, 1143–1153. DOI: 10.1039/A903304A. http://dx.doi.org/10.1039/a903304aCrossrefGoogle Scholar

  • [49] Marcus, R. K., Anfone, A. B., Luesaiwong, W., Hill, T. A., Perahia, D., & Shimizu, K. (2002). Radio frequency glow discharge optical emission spectroscopy: a new weapon in the depth profiling arsenal. Analytical & Bioanalytical Chemistry, 373, 656–663. DOI: 10.1007/s00216-002-1378-8. http://dx.doi.org/10.1007/s00216-002-1378-8CrossrefGoogle Scholar

  • [50] Melessanaki, K., Mateo, M., Ferrence, S. C., Betancourt, P. P., & Anglos, D. (2002). The application of LIBS for the analysis of archaeological ceramic and metal artifacts. Applied Surface Science, 197–198, 156–163. DOI: 10.1016/S0169-4332(02)00459-2. http://dx.doi.org/10.1016/S0169-4332(02)00459-2CrossrefGoogle Scholar

  • [51] Miot, C., Proust, C., Husson, E., Blondiaux, G., & Coutures, J. P. (1995). Laser ablation of barium titanate ceramics prepared by the citric route: The evolution of residual carbon content. Journal of the European Ceramic Society, 15, 127–133. DOI: 10.1016/0955-2219(95)93058-B. http://dx.doi.org/10.1016/0955-2219(95)93058-BCrossrefGoogle Scholar

  • [52] Miot, C., Proust, C., Husson, E., Erre, R., Blondiaux, G., Beny, J. M., & Coutures, J. P. (1997). Characterization of barium titanate ceramics obtained by a chemical route after laser ablation. Materials Science & Engineering B, 45, 17–24. DOI: 10.1016/S0921-5107(96)02013-2. http://dx.doi.org/10.1016/S0921-5107(96)02013-2CrossrefGoogle Scholar

  • [53] Mizoguchi, T. (2011). Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation. Journal of the Ceramic Society of Japan, 119, 325–333. DOI: 10.2109/jcersj2.119.325. http://dx.doi.org/10.2109/jcersj2.119.325CrossrefGoogle Scholar

  • [54] Musil, P., Otruba, V., Kanickń, V., & Mermet, J.-M. (2000). Determination of elements in agricultural soils using IR laser ablation inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B, 55, 1747–1758. DOI: 10.1016/S0584-8547(00)00280-9. http://dx.doi.org/10.1016/S0584-8547(00)00280-9CrossrefGoogle Scholar

  • [55] Neff, H. (2003). Analysis of Mesoamerican Plumbate pottery surfaces by laser inductively-coupled plasma-mass spectrometry (LA-ICP-MS). Journal of Archaeological Science, 30, 21–35. DOI: 10.1006/jasc.2001.0801. http://dx.doi.org/10.1006/jasc.2001.0801CrossrefGoogle Scholar

  • [56] Nelis, T., & Pallosi, J. (2006). Glow discharge as a tool for surface and interface analysis. Applied Spectroscopy Reviews, 41, 227–258. DOI: 10.1080/05704920600620345. http://dx.doi.org/10.1080/05704920600620345CrossrefGoogle Scholar

  • [57] Nelis, T., & Payling, R. (2003). Glow discharge optical emission spectroscopy: A practical guide (RSC analytical spectroscopy monographs). Cambridge, UK: The Royal Society of Chemistry. Google Scholar

  • [58] Papadopoulou, D. N., Zachariadis, G. A., Anthemidis, A. N., Tsirliganis, N. C., & Stratis, J. A. (2004a). Microwave-assisted versus conventional decomposition procedures applied to a ceramic potsherd standard reference material by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 505, 173–181. DOI: 10.1016/S0003-2670(03)00357-X. http://dx.doi.org/10.1016/S0003-2670(03)00357-XCrossrefGoogle Scholar

  • [59] Papadopoulou, D. N., Zachariadis, G. A., Anthemidis, A. N., Tsirliganis, N. C., & Stratis, J. A. (2004b). Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis. Spectrochimica Acta Part B, 59, 1877–1884. DOI: 10.1016/j.sab.2004.09.001. http://dx.doi.org/10.1016/j.sab.2004.09.001CrossrefGoogle Scholar

  • [60] Payling, R., Aeberhard, M., & Delfosse, D. (2001). Improved quantitative analysis of hard coatings by radiofrequency glow discharge optical emission spectrometry (rf-GD-OES). Journal of Analytical Atomic Spectrometry, 16, 50–55. DOI: 10.1039/B007543O. http://dx.doi.org/10.1039/b007543oCrossrefGoogle Scholar

  • [61] Payling, R., Jones, D., & Bengtson, A. (Eds.) (1997). Glow discharge optical emission spectrometry. Chichester, UK: Wiley. Google Scholar

  • [62] Pickhardt, C., Becker, J. S., & Dietze, H.-J. (2000). A new strategy of solution calibration in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples. Fresenius Journal of Analytical Chemistry, 368, 173–181. DOI: 10.1007/s002160000485. http://dx.doi.org/10.1007/s002160000485CrossrefGoogle Scholar

  • [63] Pisonero, J., Fernández, B., Pereiro, R., Bordel, N., & Sanz-Medel, A. (2006). Glow-discharge spectrometry for direct analysis of thin and ultra-thin solid films. TrAC Trends in Analytical Chemistry, 25, 11–18. DOI: 10.1016/j.trac.2005.04.019. http://dx.doi.org/10.1016/j.trac.2005.04.019CrossrefGoogle Scholar

  • [64] Plotnikov, A., Vogt, C., Hoffmann, V., Täschner, C., & Wetzig, K. (2001). Application of laser ablation inductively coupled plasma quadrupole mass spectrometry (LA-ICP-QMS) for depth profile analysis. Journal of Analytical Atomic Spectrometry, 16, 1290–1295. DOI: 10.1039/B105441B. http://dx.doi.org/10.1039/b105441bCrossrefGoogle Scholar

  • [65] Resano, M., García-Ruiz, E., & Vanhaecke, F. (2010). Laser ablation-inductively coupled plasma mass spectrometry in archaeometric research. Mass Spectrometry Reviews, 29, 55–78. DOI: 10.1002/mas.20220. CrossrefGoogle Scholar

  • [66] Resano, M., Pérez-Arantegui, J., Garcia-Ruiz, E., & Vanhaecke, F. (2005). Laser ablation-inductively coupled plasma mass spectrometry for the fast and direct characterization of antique glazed ceramics. Journal of Analytical Atomic Spectrometry, 20, 508–514. DOI: 10.1039/B500691K. http://dx.doi.org/10.1039/b500691kCrossrefGoogle Scholar

  • [67] Sánchez Ramos, S., Bosch Reig, F., Gimeno Adelantado, J. V., Yusá Marco, D. J., & Doménech Carbó, A. (2002). Study and dating of medieval ceramic tiles by analysis of enamels with atomic absortption spectroscopy, X-ray fluorescence and electron probe micoranalysis. Spectrochimica Acta Part B, 57, 689–700. DOI: 10.1016/S0584-8547(01)00395-0. http://dx.doi.org/10.1016/S0584-8547(01)00395-0CrossrefGoogle Scholar

  • [68] Shimizu, K., Habazaki, H., Skeldon, P., & Thompson, G. E. (2003). Impact of RF-GD-OES in practical surface analysis. Spectrochimica Acta Part B, 58, 1573–1583. DOI: 10.1016/S0584-8547(03)00133-2. http://dx.doi.org/10.1016/S0584-8547(03)00133-2CrossrefGoogle Scholar

  • [69] Shimizu, K., Habazaki, H., Skeldon, P., Thompson, G. E., & Marcus, R. K. (2002). Radio frequency glow discharge optical emission spectroscopy: Depth profiling analysis of thin anodic alumina films as potential reference materials. Spectroscopy, 17, 14–23. Google Scholar

  • [70] Sokaras, D., Bistekos, E., Georgiou, L., Salomon, J., Bogovac, M., Aloupi-Siotis, E., Paschalis, V., Aslani, I., Karabagia, S., Lagoyannis, A., Harissopulos, S., Kantarelou, V., & Karydas, A.-G. (2011). The new external ion beam analysis setup at the Demokritos Tandem accelerator and first applications in cultural heritage. Nuclear Instruments and Methods in Physics Research B, 269, 519–527. DOI: 10.1016/j.nimb.2011.01.002. http://dx.doi.org/10.1016/j.nimb.2011.01.002CrossrefGoogle Scholar

  • [71] Speakman, R. J., & Neff, H. (2002). Evaluation of painted pottery from the Mesa Verde region using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS). American Antiquity, 67, 137–144. http://dx.doi.org/10.2307/2694882Google Scholar

  • [72] Streli, C., Wobrauschek, P., Meirer, F., & Pepponi, G. (2008). Synchrotron radiation induced TXRF. Journal of Analytical Atomic Spectrometry, 23, 792–798. DOI: 10.1039/B719508G. http://dx.doi.org/10.1039/b719508gCrossrefGoogle Scholar

  • [73] Sziki, G. A., Biró, K. T., Uzonyi, I., Dobos, E., & Kiss, A. Z. (2003). Investigation of incrusted pottery found in the territory of Hungary by micro-PIXE method. Nuclear Instruments and Methods in Physics Research B, 210, 478–482. DOI: 10.1016/S0168-583X(03)01086-3. http://dx.doi.org/10.1016/S0168-583X(03)01086-3CrossrefGoogle Scholar

  • [74] Tite, M. S. (2008). Ceramic production, provenance and use—a review. Archaeometry, 50, 216–231. DOI: 10.1111/j.1475-4754.2008.00391.x. http://dx.doi.org/10.1111/j.1475-4754.2008.00391.xCrossrefGoogle Scholar

  • [75] Tsolakidou, A., Buxeda i Garrigós, J., & Kilikoglou, V. (2002). Assessment of dissolution techniques for the analysis ceramic samples by plasma spectrometry. Analytica Chimica Acta, 474, 177–188. DOI: 10.1016/S0003-2670(02)01029-2. http://dx.doi.org/10.1016/S0003-2670(02)01029-2CrossrefGoogle Scholar

  • [76] Vaculovič, T., Otruba, V., Matal, O., & Kanický, V. (2011). Determination of carbon in solidified sodium coolant using new ICP-OES methods. Chemical Papers, 65, 620–625. DOI: 10.2478/s11696-011-0054-x. http://dx.doi.org/10.2478/s11696-011-0054-xCrossrefGoogle Scholar

  • [77] Van Grieken, R. E., & Markowicz, A. A. (Eds.) (2002). Handbook of X-ray spectrometry (2nd ed.) (Practical spectroscopy series, Vol. 29). New York, NY, USA: Marcel Dekker. Google Scholar

  • [78] Villanova, J., Sicardy, O., Fortunier, R., Micha, J.-S., & Bleuet, P. (2010). Determination of global and local residual stresses in SOFC by X-ray diffraction. Nuclear Instruments and Methods in Physics Research B, 268, 282–286. DOI: 10.1016/j.nimb.2009.09.017. http://dx.doi.org/10.1016/j.nimb.2009.09.017CrossrefGoogle Scholar

  • [79] Wilken, L., Hoffmann, V., & Wetzig, K. (2005). Radio frequency glow discharge source with integrated voltage and current probes used for sputtering rate and emission yield measurements at insulating samples. Analytical & Bioanalytical Chemistry, 383, 424–433. DOI: 10.1007/s00216-005-3246-9. http://dx.doi.org/10.1007/s00216-005-3246-9CrossrefGoogle Scholar

  • [80] Xenogiannopoulou, E., Andreouli, C., & Stournaras, C. (2009). Application of LIBS technique for the compositional analysis of an Attic black pottery. Journal of Nano Research, 8, 61–70. DOI: 10.4028/www.scientific.net/JNanoR.8.61. http://dx.doi.org/10.4028/www.scientific.net/JNanoR.8.61CrossrefGoogle Scholar

  • [81] Yoon, Y., Kim, T., Yang, M., Lee, K., & Lee, G. (2001). Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy. Microchemical Journal, 68, 251–256. DOI: 10.1016/S0026-265X(00)00155-7. http://dx.doi.org/10.1016/S0026-265X(00)00155-7CrossrefGoogle Scholar

  • [82] Zhu, J.-H., Feng, S.-L., Chu, F.-Y., Feng, X.-Q., Xie, G.-X., Yan, L.-T., & Li, L. (2010). Development of ceramic standard samples used for X-ray fluorescence spectrometric analysis. Spectroscopy and Spectral Analysis, 30, 3143–3148. DOI: 10.3964/j.issn.1000-0593(2010)11-3143-06. (in Chinese) CrossrefGoogle Scholar

About the article

Published Online: 2011-09-28

Published in Print: 2011-12-01


Citation Information: Chemical Papers, Volume 65, Issue 6, Pages 769–781, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-011-0085-3.

Export Citation

© 2011 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in