Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 66, Issue 12


Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements

Secil Tekin-Celebi
  • Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankarara, Turkey
  • Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ali Solak
  • Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankarara, Turkey
  • Department of Chemical Engineering, Kyrgyzstan-Turkiye Manas University, 720044, Bishkek, Kyrgyzstan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zafer Ustundag / Serkan Demirci
Published Online: 2012-09-13 | DOI: https://doi.org/10.2478/s11696-012-0237-0


Acidity constant values of benzoic acid (BA)-modified platinum electrode (Pt-BA) and p-aminobenzoic acid (pABA)-modified platinum electrode (Pt-NHBA) surfaces were determined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and contact angle measurements (CAM). Diazonium tetrafluoroborate salt reduction and pABA oxidation reactions were used to prepare (Pt-BA) and (Pt-NHBA) surfaces, respectively. Both surfaces exhibited pH dependence with [Fe(CN)6]3−/4− redox probe solutions at different pH; this allowed us to estimate the surface pK a values. Acidity constants for Pt-BA surface were found to be pK a (3.09 ± 0.25), (4.89 ± 0.11), and (3.91 ± 0.54) by CV, EIS, and CAM techniques, respectively, while the values for Pt-NHBA surface were pK a (3.16 ± 0.45), (4.24 ± 0.40), and (5.64 ± 0.12). The Pt-BA surface pK a values were lower in CV and CAM measurements relative to the bulk solution of BA, while a higher value was observed in EIS for Pt-BA surface. The pK a values determined for Pt-NHBA surface via both CV and EIS were lower than the bulk value; however, the result obtained from CAM was one unit higher than pK a of bulk pABA.

Keywords: platinum electrode; p-aminobenzoic acid; cyclic voltammetry; electrochemical impedance spectroscopy; determination of pK a; contact angle

  • [1] Abiman, P., Crossley, A., Wildgoose, G. G., Jones, J. H., & Compton, R. G. (2007). Investigating the thermodynamic causes behind the anomalously large shifts in pK a values of benzoic acid-modified graphite and glassy carbon surfaces. Langmuir, 23, 7847–7852. DOI: 10.1021/la7005277. http://dx.doi.org/10.1021/la7005277CrossrefGoogle Scholar

  • [2] Adenier, A., Chehimi, M. M., Gallardo, I., Pinson, J., & Vilà, N. (2004). Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir, 20, 8243–8253. DOI: 10.1021/la049194c. http://dx.doi.org/10.1021/la049194cCrossrefGoogle Scholar

  • [3] Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., & Savéant, J. M. (1997). Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 119, 201–207. DOI: 10.1021/ja963354s. http://dx.doi.org/10.1021/ja963354sCrossrefGoogle Scholar

  • [4] Anariba, F., DuVall, S. H., & McCreery, R. L. (2003). Mono- and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy “scratching”. Analytical Chemistry, 75, 3837–3844. DOI: 10.1021/ac034026v. http://dx.doi.org/10.1021/ac034026vCrossrefGoogle Scholar

  • [5] Andreu, R., & Fawcett, W. R. (1994). Discreteness-of-charge effects at molecular films containing acid/base groups. The Journal of Physical Chemistry, 98, 12753–12758. DOI: 10.1021/j100099a045. http://dx.doi.org/10.1021/j100099a045CrossrefGoogle Scholar

  • [6] Bain, C. D., & Whitesides, G. M. (1989). A study by contact angle of the acid-base behavior of monolayers containing.omega.-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading. Langmuir, 5, 1370–1378. DOI: 10.1021/la00090a019. http://dx.doi.org/10.1021/la00090a019CrossrefGoogle Scholar

  • [7] Baranton, S., & Bélanger, D. (2005). Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations. The Journal of Physical Chemistry B, 109, 24401–24410. DOI: 10.1021/jp054513+. http://dx.doi.org/10.1021/jp054513+CrossrefGoogle Scholar

  • [8] Berisha, A., Combellas, C., Kanoufi, F., Pinson, J., & Podvorica, F. I. (2011). Physisorption vs grafting of aryldiazonium salts onto iron: A corrosion study. Electrochimica Acta, 56, 10762–10766. DOI: 10.1016/j.electacta.2011.01.049. http://dx.doi.org/10.1016/j.electacta.2011.01.049CrossrefGoogle Scholar

  • [9] Bryant, M. A., & Crooks, R. M. (1993). Determination of surface pK a values of surface-confined molecules derivatized with pH-sensitive pendant groups. Langmuir, 9, 385–387. DOI: 10.1021/la00026a005. http://dx.doi.org/10.1021/la00026a005CrossrefGoogle Scholar

  • [10] Burris, S. C., Zhou, Y., Maupin, W. A., Ebelhar, A. J., & Daugherty, M. W. (2008). The effect of surface preparation on apparent surface pK a’s of ω-mercaptocarboxylic acid self-assembled monolayers on polycrystalline gold. The Journal of Physical Chemistry C, 112, 6811–6815. DOI: 10.1021/jp077052w. http://dx.doi.org/10.1021/jp077052wCrossrefGoogle Scholar

  • [11] Cheng, Q., & Brajter-Toth, A. (1992). Selectivity and sensitivity of self-assembled thioctic acid electrodes. Analytical Chemistry, 64, 1998–2000. DOI: 10.1021/ac00041a041. http://dx.doi.org/10.1021/ac00041a041CrossrefGoogle Scholar

  • [12] Cheng, Q., & Brajter-Toth, A. (1996). Permselectivity, sensitivity, and amperometric pH sensing at thioctic acid monolayer microelectrodes. Analytical Chemistry, 68, 4180–4185. DOI: 10.1021/ac960329w. http://dx.doi.org/10.1021/ac960329wCrossrefGoogle Scholar

  • [13] Creager, S. E., & Clarke, J. (1994). Contact-angle titrations of mixed ω-mercaptoalkanoic acid/alkanethiol monolayers on gold. Reactive vs nonreactive spreading, and chain length effects on surface pK a values. Langmuir, 10, 3675–3683. DOI: 10.1021/la00022a048. http://dx.doi.org/10.1021/la00022a048CrossrefGoogle Scholar

  • [14] Demirci, S., Alaslan, A., & Caykara, T. (2009). Preparation, characterization and surface pK a values of poly(N-vinyl-2-pyrrolidone)/chitosan blend films. Applied Surface Science, 255, 5979–5983. DOI: 10.1016/j.apsusc.2009.01.050. http://dx.doi.org/10.1016/j.apsusc.2009.01.050CrossrefGoogle Scholar

  • [15] Demirci, S., & Caykara, T. (2010). Formation of dicarboxylic acid-terminated monolayers on silicon wafer surface. Surface Science, 604, 649–653. DOI: 10.1016/j.susc.2010.01.009. http://dx.doi.org/10.1016/j.susc.2010.01.009CrossrefGoogle Scholar

  • [16] Downard, A. J. (2000). Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis, 12, 1085–1096. DOI: 10.1002/1521-4109(200010)12:14〈1085::aid-elan 1085〉3.0.co;2-a. http://dx.doi.org/10.1002/1521-4109(200010)12:14<1085::AID-ELAN1085>3.0.CO;2-ACrossrefGoogle Scholar

  • [17] Downard, A. J., & Prince, M. J. (2001). Barrier properties of organic monolayers on glassy carbon electrodes. Langmuir, 17, 5581–5586. DOI: 10.1021/la010499q. http://dx.doi.org/10.1021/la010499qCrossrefGoogle Scholar

  • [18] Fernández, C. M., & Martin, V. C. (1977). Preparation d’un tampon universel de force ionique 0,3 M. Talanta, 24, 747–748. DOI: 10.1016/0039-9140(77)80204-x. http://dx.doi.org/10.1016/0039-9140(77)80204-XCrossrefGoogle Scholar

  • [19] Foulon, C., Duhal, N., Lacroix-Callens, B., Vaccher, C., Bonte, J. P., & Goossens, J. F. (2007). Determination of pK a values of benzoxa-, benzothia- and benzoselena-zolinone derivatives by capillary electrophoresis: Comparison with potentiometric titration and spectrometric data. European Journal of Pharmaceutical Sciences, 31, 165–171. DOI: 10.1016/j.ejps.2007.03.002. http://dx.doi.org/10.1016/j.ejps.2007.03.002CrossrefGoogle Scholar

  • [20] Ghilane, J., Delamar, M., Guilloux-Viry, M., Lagrost, C., Mangeney, C., & Hapiot, P. (2005). Indirect reduction of aryldiazonium salts onto cathodically activated platinum surfaces: Formation of metal-organic structures. Langmuir, 21, 6422–6429. DOI: 10.1021/la050401y. http://dx.doi.org/10.1021/la050401yCrossrefGoogle Scholar

  • [21] Godínez, L. A., Castro, R., & Kaifer, A. E. (1996). Adsorption of viologen-based polyelectrolytes on carboxylate-terminated self-assembled monolayers. Langmuir, 12, 5087–5092. DOI: 10.1021/la960485y. http://dx.doi.org/10.1021/la960485yCrossrefGoogle Scholar

  • [22] Hernández-Muñoz, L. S., Fragoso-Soriano, R. J., Vázquez-López, C., Klimova, E., Ortiz-Frade, L. A., Astudillo, P. D., & González, F. J. (2010). Modification of carbon surfaces with methyl groups by using ferrocene derivatives as redox catalysts of the oxidation of acetate ions. Journal of Electroanalytical Chemistry, 650, 62–67. DOI: 10.1016/j.jelechem.2010.09.006. http://dx.doi.org/10.1016/j.jelechem.2010.09.006CrossrefGoogle Scholar

  • [23] Hu, K., & Bard, A. J. (1997). Use of atomic force microscopy for the study of surface acid-base properties of carboxylic acidterminated self-assembled monolayers. Langmuir, 13, 5114–5119. DOI: 10.1021/la9700782. http://dx.doi.org/10.1021/la9700782CrossrefGoogle Scholar

  • [24] İsbir, A. A., Solak, A. O., Üstündağ, Z., Bilge, S., Natsagdorj, A., Kiliç, E., & Kiliç, Z. (2005). The electrochemical behavior of some podands at a benzo[c]cinnoline modified glassy carbon electrode. Analytica Chimica Acta, 547, 59–63. DOI:10.1016/j.aca.2005.02.049. http://dx.doi.org/10.1016/j.aca.2005.02.049CrossrefGoogle Scholar

  • [25] İsbir, A. A., Solak, A. O., Üstündağ, Z., Bilge, S., & Kılıç, Z. (2006). Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode. Analytica Chimica Acta, 573–574, 26–33. DOI: 10.1016/j.aca.2006.03.056. CrossrefGoogle Scholar

  • [26] İsbir-Turan, A. A., Üstündağ, Z., Solak, A. O., Kılıç, E., & Avseven, A. (2009). Electrochemical and spectroscopic characterization of a benzo[c]cinnoline electrografted platinum surface. Thin Solid Films, 517, 2871–2877. DOI:10.1016/j.tsf.2008.10.073. http://dx.doi.org/10.1016/j.tsf.2008.10.073CrossrefGoogle Scholar

  • [27] İsbir-Turan, A., Kılıç, E., Üstündağ, Z., Eki, H., Solak, A. O., & Zorer, B. (2012). Syntheses and modifications of bisdiazo nium salts of 3,8-benzo[c]cinnoline and 3,8-benzo[c]cinnoline 5-oxide onto glassy carbon electrode and the characterization of the modified surfaces. Journal of Solid State Electrochemistry, 16, 235–245. DOI: 10.1007/s10008-011-1319-6. http://dx.doi.org/10.1007/s10008-011-1319-6CrossrefGoogle Scholar

  • [28] Jain, R., & Vikas (2011). Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation. Colloids and Surfaces B: Biointerfaces, 87, 423–426. DOI: 10.1016/j.colsurfb.2011.06.001. http://dx.doi.org/10.1016/j.colsurfb.2011.06.001CrossrefGoogle Scholar

  • [29] Janin, M., Ghilane, J., Randriamahazaka, H., & Lacroix, J. C. (2009). Microelectrodes modification through the reduction of aryl diazonium and their use in scanning electrochemical microscopy (SECM). Electrochemistry Communications, 11, 647–650. DOI: 10.1016/j.elecom.2009.01.004. http://dx.doi.org/10.1016/j.elecom.2009.01.004CrossrefGoogle Scholar

  • [30] Khoshroo, M., & Rostami, A. A. (2008). EIS study of the redox reaction of Fe(CN) 63−/4− at glassy carbon electrode via diazonium reduction in aqueous and acetonitrile solutions. Journal of Electroanalytical Chemistry, 624, 205–210. DOI: 10.1016/j.jelechem.2008.09.008. http://dx.doi.org/10.1016/j.jelechem.2008.09.008CrossrefGoogle Scholar

  • [31] Kibena, E., Mäeorg, U., Matisen, L., & Tammeveski, K. (2011). Electrochemical behaviour of ABTS on aryl-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 661, 343–350. DOI: 10.1016/j.jelechem.2011.08.015. http://dx.doi.org/10.1016/j.jelechem.2011.08.015CrossrefGoogle Scholar

  • [32] Kim, K., & Kwak, J. (2001). Faradaic impedance titration of pure 3-mercaptopropionic acid and ethanethiol mixed monolayers on gold. Journal of Electroanalytical Chemistry, 512, 83–91. DOI: 10.1016/s0022-0728(01)00588-5. http://dx.doi.org/10.1016/S0022-0728(01)00588-5CrossrefGoogle Scholar

  • [33] Li, X., Wan, Y., & Sun, C. (2004). Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution. Journal of Electroanalytical Chemistry, 569, 79–87. DOI: 10.1016/j.jelechem.2004.01.036. http://dx.doi.org/10.1016/j.jelechem.2004.01.036CrossrefGoogle Scholar

  • [34] Liu, J., Cheng, L., Liu, B., & Dong, S. (2000). Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films. Langmuir, 16, 7471–7476. DOI: 10.1021/la9913506. http://dx.doi.org/10.1021/la9913506CrossrefGoogle Scholar

  • [35] Liu, G., Böcking, T., & Gooding, J. J. (2007). Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry, 600, 335–344. DOI: 10.1016/j.jelechem.2006.09.012. http://dx.doi.org/10.1016/j.jelechem.2006.09.012CrossrefGoogle Scholar

  • [36] Liu, G., Liu, J., Davis, T. P., & Gooding, J. J. (2011). Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody. Biosensors and Bioelectronics, 26, 3660–3665. DOI: 10.1016/j.bios.2011.02.026. http://dx.doi.org/10.1016/j.bios.2011.02.026CrossrefGoogle Scholar

  • [37] Lu, G. H., Liu, C. Y., Zhao, H. Y., Liu, W., Jiang, L. P., & Jiang, L. Y. (2004). Determination of surface pK a of pure mercaptoacetic acid and 2-mercaptobenzothiazole mixed monolayers by impedance titration. Chinese Chemical Letters, 15, 827–830. Google Scholar

  • [38] Luo, I. Q., Cheng, Z. L., Yang, X. R., & Wang, E. K. (2000). Study on surface acid-base property of carboxylic acidterminated self-assembled monolayers by cyclic voltammetry and electrochemical impedance spectroscopy. Chinese Journal of Chemistry, 18, 863–867. DOI: 10.1002/cjoc.20000180612. http://dx.doi.org/10.1002/cjoc.20000180612CrossrefGoogle Scholar

  • [39] Morita, K., Yamaguchi, A., & Teramae, N. (2004). Electrochemical modification of benzo-15-crown-5 ether on a glassy carbon electrode for alkali metal cation recognition. Journal of Electroanalytical Chemistry, 563, 249–255. DOI: 10.1016/j.jelechem.2003.09.018. http://dx.doi.org/10.1016/j.jelechem.2003.09.018Google Scholar

  • [40] Oztekin, Y., Ramanaviciene, A., Yazicigil, Z., Solak, A. O., & Ramanavicius, A. (2011). Direct electron transfer from glucose oxidase immobilized on polyphenanthroline-modified glassy carbon electrode. Biosensors and Bioelectronics, 26, 2541–2546. DOI: 10.1016/j.bios.2010.11.001. http://dx.doi.org/10.1016/j.bios.2010.11.001CrossrefGoogle Scholar

  • [41] Oztekin, Y., Yazicigil, Z., Solak, A. O., Ustundag, Z., Okumus, A., Kilic, Z., Ramanaviciene, A., & Ramanavicius, A. (2012). Phenanthroline derivatives electrochemically grafted to glassy carbon for Cu(II) ion detection. Sensors and Actuators B: Chemical, 166–167, 117–127. DOI: 10.1016/j.snb.2012.01.025. http://dx.doi.org/10.1016/j.snb.2012.01.025CrossrefGoogle Scholar

  • [42] Patolsky, F., Zayats, M., Katz, E., & Willner, I. (1999). Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: Characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Analytical Chemistry, 71, 3171–3180. DOI: 10.1021/ac9901541. http://dx.doi.org/10.1021/ac9901541CrossrefGoogle Scholar

  • [43] Petrov, J. G., & Möbius, D. (1996). Effect of the ω-dipoles of neutral Langmuir monolayers on the pK of an embedded amphiphilic polarity probe. Langmuir, 12, 3650–3656. DOI: 10.1021/la9515736. http://dx.doi.org/10.1021/la9515736CrossrefGoogle Scholar

  • [44] Pinson, J., & Podvorica, F. (2005). Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chemical Society Reviews, 34, 429–439. DOI: 10.1039/b406228k. http://dx.doi.org/10.1039/b406228kCrossrefGoogle Scholar

  • [45] Saby, C., Ortiz, B., Champagne, G. Y., & Bélanger, D. (1997). Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir, 13, 6805–6813. DOI: 10.1021/la961033o. http://dx.doi.org/10.1021/la961033oCrossrefGoogle Scholar

  • [46] Solak, A. O., Eichorst, L. R., Clark, W. J., & McCreery, R. L. (2003). Modified carbon surfaces as “organic electrodes” that exhibit conductance switching. Analytical Chemistry, 75, 296–305. DOI: 10.1021/ac026107h. http://dx.doi.org/10.1021/ac026107hCrossrefGoogle Scholar

  • [47] Stewart, M. P., Maya, F., Kosynkin, D. V., Dirk, S. M., Stapleton, J. J., McGuiness, C. L., Allara, D. L., & Tour, J. M. (2004). Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. Journal of the American Chemical Society, 126, 370–378. DOI: 10.1021/ja0383120. http://dx.doi.org/10.1021/ja0383120CrossrefGoogle Scholar

  • [48] Sugihara, K., Shimazu, K., & Uosaki, K. (2000). Electrode potential effect on the surface pK a of a self-assembled 15-mercaptohexadecanoic acid monolayer on a gold/quartz crystal microbalance electrode. Langmuir, 16, 7101–7105. DOI: 10.1021/la991301t. http://dx.doi.org/10.1021/la991301tCrossrefGoogle Scholar

  • [49] Üstündağ, Z., & Solak, A. O. (2009). EDTA modified glassy carbon electrode: Preparation and characterization. Electrochimica Acta, 54, 6426–6432. DOI: 10.1016/j.electacta.2009.06.015. http://dx.doi.org/10.1016/j.electacta.2009.06.015CrossrefGoogle Scholar

  • [50] Vase, K. H., Holm, A. H., Pedersen, S. U., & Daasbjerg, K. (2005). Immobilization of aryl and alkynyl groups onto glassy carbon surfaces by electrochemical reduction of iodonium salts. Langmuir, 21, 8085–8089. DOI: 10.1021/la050933e. http://dx.doi.org/10.1021/la050933eCrossrefGoogle Scholar

  • [51] Vase, K. H., Holm, A. H., Norrman, K., Pedersen, S. U., & Daasbjerg, K. (2008). Electrochemical surface derivatization of glassy carbon by the reduction of triaryl- and alkyldiphenylsulfonium salts. Langmuir, 24, 182–188. DOI: 10.1021/la702301a. http://dx.doi.org/10.1021/la702301aCrossrefGoogle Scholar

  • [52] Wagner, M., Mavon, A., Haidara, H., Vallat, M. F., Duplan, H., & Roucoules, V. (2012). From contact angle titration to chemical force microscopy: a new route to assess the pH-dependent character of the stratum corneum. International Journal of Cosmetic Science, 34, 55–63. DOI: 10.1111/j.1468-2494.2011.00681.x. http://dx.doi.org/10.1111/j.1468-2494.2011.00681.xCrossrefGoogle Scholar

  • [53] Wang, J., Frostman, L. M., & Ward, M. D. (1992). Selfassembled thiol monolayers with carboxylic acid functionality: measuring pH-dependent phase transitions with the quartz crystal microbalance. The Journal of Physical Chemistry, 96, 5224–5228. DOI: 10.1021/j100192a010. http://dx.doi.org/10.1021/j100192a010CrossrefGoogle Scholar

  • [54] Yang, G., Shen, Y., Wang, M., Chen, H., Liu, B., & Dong, S. (2006). Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aque ous solution. Talanta, 68, 741–747. DOI: 10.1016/j.talanta.2005.05.017. http://dx.doi.org/10.1016/j.talanta.2005.05.017CrossrefGoogle Scholar

  • [55] Yu, H. Z., Xia, N., & Liu, Z. F. (1999). SERS titration of 4-mercaptopyridine self-assembled monolayers at aqueous buffer/gold interfaces. Analytical Chemistry, 71, 1354–1358. DOI: 10.1021/ac981131+. http://dx.doi.org/10.1021/ac981131+CrossrefGoogle Scholar

  • [56] Zhao, J., Luo, L., Yang, X., Wang, E., & Dong, S. (1999). Determination of surface pK a of SAM using an electrochemical titration method. Electroanalysis, 11, 1108–1113. DOI: 10.1002/(sici)1521-4109(199911)11:15〈1108::aidelan1108〉3.0.co;2-z. http://dx.doi.org/10.1002/(SICI)1521-4109(199911)11:15<1108::AID-ELAN1108>3.0.CO;2-ZCrossrefGoogle Scholar

  • [57] Zhou, J., & Wipf, D. O. (1997). Deposition of conducting polyaniline patterns with the scanning electrochemical microscope. Journal of the Electrochemical Society, 144, 1202–1207. DOI: 10.1149/1.1837573. http://dx.doi.org/10.1149/1.1837573CrossrefGoogle Scholar

About the article

Published Online: 2012-09-13

Published in Print: 2012-12-01

Citation Information: Chemical Papers, Volume 66, Issue 12, Pages 1146–1156, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0237-0.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in