Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 66, Issue 12

Issues

Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D

Nadja Serrano
  • Post-Graduate Programme in Biotechnology, Federal University of Sao Carlos, Via Washington Luís, Km 235, Monjolinho, 13565-905, Sao Carlos/SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ligia Rodrigues
  • Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos Hokka
  • Post-Graduate Programme in Biotechnology, Federal University of Sao Carlos, Via Washington Luís, Km 235, Monjolinho, 13565-905, Sao Carlos/SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina Sousa
  • Post-Graduate Programme in Biotechnology, Federal University of Sao Carlos, Via Washington Luís, Km 235, Monjolinho, 13565-905, Sao Carlos/SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Teixeira
  • Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Solange Mussatto
  • Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-09-13 | DOI: https://doi.org/10.2478/s11696-012-0242-3

Abstract

The production of antimicrobial metabolites by Paenibacillus polymyxa RNC-D was assessed. Two process variables, glucose and inoculum concentrations, were evaluated at different levels (5–40 g L−1, and at φ r = 2.5–5.0 %, respectively), and their effects on biomass formation, minimal inhibitory concentration (MIC) against Escherichia coli, and surface tension reduction (STR) were studied. When the fermentation process was carried out under non-optimised conditions, the biomass, MIC, and STR achieved the following values: 0.6 g L−1, 1 g L−1, and 18.4 mN m−1, respectively. The optimum glucose (16 g L−1) and inoculum volume ratio (φ r = 5.0 %) were defined in order to maximise the biomass formation, with a low value of MIC and high STR of extract. The experiments carried out under optimal conditions showed the following values for the dependent variables: biomass concentration 2.05 g L−1, MIC 31.2 μg mL−1, and STR 10.7 mN m−1, which represented improvement of 241.7 %, 96.9 %, and 41.9 % for the responses of biomass, MIC, and STR, respectively. This is the first recorded study on the optimisation of culture conditions for the production of antimicrobial metabolites of P. polymyxa RNC-D, and constitutes an important step in the development of strategies to modulate the production of antimicrobial molecules by this microorganism at elevated levels.

Keywords: antimicrobial metabolites; fermentation; minimal inhibitory concentration; Paenibacillus polymyxa; surface tension; optimisation

  • [1] Adinarayana, K., Prabhakar, T., Srinivasulu, V., Anitha Rao, M., Jhansi Lakshmi, P., & Ellaiah, P. (2003). Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum. Process Biochemistry, 39, 171–177. DOI: 10.1016/s0032-9592(03)00049-9. http://dx.doi.org/10.1016/S0032-9592(03)00049-9CrossrefGoogle Scholar

  • [2] Gogoi, D. K., Mazumder, S., Saikia, R., & Bora, T. C. (2008). Impact of submerged culture conditions on growth and bioactive metabolite produced by endophyte Hypocrea spp. NSF-08 isolated from Dillenia indica Linn. in North-East India. Journal de Mycologie Médicale/Journal of Medical Mycology, 18, 1–9. DOI: 10.1016/j.mycmed.2007.10.006. http://dx.doi.org/10.1016/j.mycmed.2007.10.006CrossrefGoogle Scholar

  • [3] Ito, M., & Koyama, Y. (1972a). Jolipeptin, a new peptide antibiotic. I. Isolation, physico-chemical and biological characteristics. The Journal of Antibiotics, 25, 304–308. DOI: 10.7164/antibiotics.25.304. http://dx.doi.org/10.7164/antibiotics.25.304CrossrefGoogle Scholar

  • [4] Ito, M., & Koyama, Y. (1972b). Jolipeptin, a new peptide antibiotic. II. The mode of action of jolipeptin. The Journal of Antibiotics, 25, 309–314. DOI: 10.7164/antibiotics.25.309. http://dx.doi.org/10.7164/antibiotics.25.309CrossrefGoogle Scholar

  • [5] Kajimura, Y., & Kaneda, M. (1996). Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. The Journal of Antibiotics, 49, 129–135. DOI: 10.7164/antibiotics.49.129. http://dx.doi.org/10.7164/antibiotics.49.129CrossrefGoogle Scholar

  • [6] Kajimura, Y., & Kaneda, M. (1997). Fusaricidins B, C, and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: Isolation, structure elucidation and biological activity. The Journal of Antibiotics, 50, 220–228. DOI: 10.7164/antibiotics.50.220. http://dx.doi.org/10.7164/antibiotics.50.220CrossrefGoogle Scholar

  • [7] Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriology Reviews, 41, 449–474. Google Scholar

  • [8] Lam, K. S., Mattei, J., & Forenza, S. (1989). Carbon catabolite regulation of rebeccamycin production in Saccharothrix aerocolonigenes. Journal of Industrial Microbiology & Biotechnology, 4, 105–108. DOI: 10.1007/bf01569794. CrossrefGoogle Scholar

  • [9] Mussatto, S. I., & Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 43, 540–546. DOI: 10.1016/j.procbio.2008.01.013. http://dx.doi.org/10.1016/j.procbio.2008.01.013CrossrefWeb of ScienceGoogle Scholar

  • [10] Nakajima, N., Chihara, S., & Koyama, Y. (1972). A new antibiotic, gatavalin. I. Isolation and characterization. The Journal of Antibiotics, 25, 243–247. DOI: 10.7164/antibiotics.25.243. CrossrefWeb of ScienceGoogle Scholar

  • [11] National Committee for Clinical Laboratory Standards (2002). Performance standards for antimicrobial susceptibility testing (12th Informational supplement). Wayne, PA, USA: Clinical and Laboratory Standards Institute. (M100-S12) Google Scholar

  • [12] Pichard, B., Larue, J. P., & Thouvenot, D. (1995). Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Letters, 133, 215–218. DOI: 10.1111/j.1574-6968.1995.tb07887.x. http://dx.doi.org/10.1111/j.1574-6968.1995.tb07887.xCrossrefGoogle Scholar

  • [13] Ratti, R. P., Serrano, N. F. G., Hokka, C. O., & Sousa, C. P. (2008). Antagonistic properties of some microorganisms isolated from Brazilian tropical savannah plants against Staphylococcus coagulase-positive strain. Journal of Venomous Animals and Toxins Including Tropical Diseases, 14, 294–302. DOI: 10.1590/s1678-91992008000200007. http://dx.doi.org/10.1590/S1678-91992008000200007CrossrefWeb of ScienceGoogle Scholar

  • [14] Raza, W., Wu, H. S., & Shen, Q. R. (2010). Use of response surface methodology to evaluate the effect of metal ions (Ca2+, Ni2+, Mn2+, Cu2+) on production of antifungal compounds by Paenibacillus polymyxa. Bioresource Technology, 101, 1904–1912. DOI: 10.1016/j.biortech.2009.10.029. http://dx.doi.org/10.1016/j.biortech.2009.10.029CrossrefGoogle Scholar

  • [15] Rodrigues, L. R., Teixeira, J. A., van der Mei, H. C., & Oliveira, R. (2006). Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids and Surfaces B: Biointerfaces, 53, 105–112. DOI: 10.1016/j.colsurfb.2006.08.009. http://dx.doi.org/10.1016/j.colsurfb.2006.08.009Web of ScienceCrossrefGoogle Scholar

  • [16] Santos, J. C., Mussatto, S. I., Cunha, M. A. A., & Silva, S. S. (2005). Variables that affect xylitol production from sugarcane bagasse hydrolysate in a zeolite fluidized bed reactor. Biotechnology Progress, 21, 1639–1643. DOI: 10.1021/bp050219n. http://dx.doi.org/10.1021/bp050219nCrossrefGoogle Scholar

  • [17] Schulz, B., Boyle, C., Draeger, S., Römmert, A. K., & Krohn, K. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research, 106, 996–1004. DOI: 10.1017/s0953756202006342. http://dx.doi.org/10.1017/S0953756202006342CrossrefGoogle Scholar

  • [18] Shen, J., Lu, Z.X., Bie, X.M., Lü, F. X., & Huang, X. Q. (2005). Media optimization for the novel antimicrobial peptide by Bacillus sp. fmbJ224. Chinese Journal of Biotechnology, 21, 609–614. (in Chinese) Google Scholar

  • [19] Sogn, J. A. (1976). Structure of the peptide antibiotic polypeptin. Journal of Medicinal Chemistry, 19, 1228–1231. DOI: 10.1021/jm00232a012. http://dx.doi.org/10.1021/jm00232a012CrossrefGoogle Scholar

  • [20] Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257–268. DOI: 10.1021/np030397v. http://dx.doi.org/10.1021/np030397vCrossrefGoogle Scholar

  • [21] Wang, Z. W., & Liu, X. L. (2008). Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technology, 99, 8245–8251. DOI: 10.1016/j.biortech.2008.03.039. http://dx.doi.org/10.1016/j.biortech.2008.03.039CrossrefGoogle Scholar

  • [22] Wang, X., Huang, L., Kang, Z., Buchenauer, H., & Gao, X. (2010). Optimization of the fermentation process of Actinomycete strain Hhs.015T. Journal of Biomedicine and Biotechnology, 2010, 141876. DOI: 10.1155/2010/141876. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2012-09-13

Published in Print: 2012-12-01


Citation Information: Chemical Papers, Volume 66, Issue 12, Pages 1111–1117, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0242-3.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in