Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Chemical Papers


IMPACT FACTOR 2015: 1.326

SCImago Journal Rank (SJR) 2015: 0.382
Source Normalized Impact per Paper (SNIP) 2015: 0.560
Impact per Publication (IPP) 2015: 1.279

Online
ISSN
1336-9075
See all formats and pricing
In This Section
Volume 66, Issue 5 (May 2012)

Issues

Functional polymer thin films designed for antifouling materials and biosensors

Chao Zhao
  • Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH, 44325, USA
  • Email:
/ Ling-Yan Li
  • Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA
  • Email:
/ Ming-Ming Guo
  • Department of Polymer Science, University of Akron, Akron, OH, 44325, USA
  • Email:
/ Jie Zheng
  • Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH, 44325, USA
  • Email:
Published Online: 2012-04-05 | DOI: https://doi.org/10.2478/s11696-012-0147-1

Abstract

Polymer thin films offer a versatile and ubiquitous platform for a wide variety of real-world applications in biomedicine, nanotechnology, catalysis, photovoltaic devices, and energy conversion and storage. Depending on the chemical composition of the polymers and the associated microenvironment, the physicochemical properties (biocompatibility, stability, wettability, adhesion, morphology, surface free energy, and others) of polymer films can be tuned for a specific application through precisely controlled surface synthesis and the incorporation of desirable and responsive functional groups. In this short review, we first summarise the methods most commonly used for the fabrication of polymer thin films. Then we discuss how these polymer thin films can be used in a selection of biomedical applications in antifouling materials and biosensors. Some directions for the rational design of polymer thin films to achieve a specific function or application are also provided.

Keywords: polymer thin film; antifouling; biosensor; biomaterials

  • [1] Azzaroni, O., Brown, A. A., & Huck, W. T. S. (2006). UCST wetting transitions of polyzwitterionic brushes driven by selfassociation. Angewandte Chemie International Edition, 45, 1770–1774. DOI: 10.1002/anie.200503264. http://dx.doi.org/10.1002/anie.200503264 [Crossref]

  • [2] Bai, S., Li, S., Yao, T., Hu, Y., Bao, F., Zhang, J., Zhang, Y., Zhu, S., & He, Y. (2011). Rapid detection of eight vegetable oils on optical thin-film biosensor chips. Food Control, 22, 1624–1628. DOI: 10.1016/j.foodcont.2011.03.019. http://dx.doi.org/10.1016/j.foodcont.2011.03.019 [Crossref]

  • [3] Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., & Klok, H. A. (2009). Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chemical Reviews, 109, 5437–5527. DOI: 10.1021/cr900045a. http://dx.doi.org/10.1021/cr900045a [Crossref]

  • [4] Basinska, T. (2002). Poly(styrene/acrolein) and poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres. Similarities and differences. e-Polymers, 11, 1–11.

  • [5] Basinska, T., Slomkowski, S., Kazmierski, S., Dworak, A., & Chehimi, M. M. (2004). Studies of the surface layer structure and properties of poly(styrene/α-t-butoxy-ω-polyglycidol) microspheres by carbon nuclear magnetic resonance, Xray photoelectron spectroscopy, and the adsorption of human serum albumin and γ-globulins. Journal of Polymer Science Part A: Polymer Chemistry, 42, 615–623. DOI: 10.1002/pola.10863. http://dx.doi.org/10.1002/pola.10863 [Crossref]

  • [6] Bernand-Mantel, D., Chehimi, M. M., Millot, M. C., & Carbonnier, B. (2010). Protein-functionalized ultrathin glycidyl methacrylate polymer grafts on gold for the development of optical biosensors: an SPR investigation. Surface and Interface Analysis, 42, 1035–1040. DOI: 10.1002/sia.3469. http://dx.doi.org/10.1002/sia.3469 [Crossref]

  • [7] Bernards, M. T., Cheng, G., Zhang, Z., Chen, S., & Jiang, S. (2008). Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules, 41, 4216–4219. DOI: 10.1021/ma800185y. http://dx.doi.org/10.1021/ma800185y [Crossref]

  • [8] Blas, H., Save, M., Boissière, C., Sanchez, C., & Charleux, B. (2011). Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules, 44, 2577–2588. DOI: 10.1021/ma200354r. http://dx.doi.org/10.1021/ma200354r [Crossref]

  • [9] Boozer, C., Ladd, J., Chen, S., Yu, Q., Homola, J., & Jiang, S. (2004). DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Analytical Chemistry, 76, 6967–6972. DOI: 10.1021/ac048908l. http://dx.doi.org/10.1021/ac048908l [Crossref]

  • [10] Brocchini, S., James, K., Tangpasuthadol, V., & Kohn, J. (1997). A combinatorial approach for polymer design. Journal of the American Chemical Society, 119, 4553–4554. DOI: 10.1021/ja970389z. http://dx.doi.org/10.1021/ja970389z [Crossref]

  • [11] Brocchini, S., James, K., Tangpasuthadol, V., & Kohn, J. (1998). Structure-property correlations in a combinatorial library of degradable biomaterials. Journal of Biomedical Materials Research, 42, 66–75. DOI: 10.1002/(sici)1097-4636(199810)42:1〈66::aid-jbm9〉3.0.co;2-m. http://dx.doi.org/10.1002/(SICI)1097-4636(199810)42:1<66::AID-JBM9>3.0.CO;2-M [Crossref]

  • [12] Chang, Y., Chang, W. J., Shih, Y. J., Wei, T. C., & Hsiue, G. H. (2011). Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Applied Materials & Interfaces, 3, 1228–1237. DOI: 10.1021/am200055k. http://dx.doi.org/10.1021/am200055k [Crossref]

  • [13] Chang, Y., Chen, S., Yu, Q., Zhang, Z., Bernards, M., & Jiang, S. (2007). Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules, 8, 122–127. DOI: 10.1021/bm060739m. http://dx.doi.org/10.1021/bm060739m [Crossref]

  • [14] Chang, Y., Shu, S. H., Shih, Y. J., Chu, C. W., Ruaan, R. C., & Chen, W. Y. (2010a). Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir, 26, 3522–3530. DOI: 10.1021/la903172j. http://dx.doi.org/10.1021/la903172j [Crossref]

  • [15] Chang, Y., Yandi, W., Chen, W. Y., Shih, Y. J., Yang, C. C., Chang, Y., Ling, Q. D., & Higuchi, A. (2010b). Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules, 11, 1101–1110. DOI: 10.1021/bm100093g. http://dx.doi.org/10.1021/bm100093g [Crossref]

  • [16] Chelmowski, R., Koester, S. D., Kerstan, A., Prekelt, A., Grunwald, C., Winkler, T., Metzler-Nolte, N., Terfort, A., & Wöll, C. (2008). Peptide-based SAMs that resist the adsorption of proteins. Journal of the American Chemical Society, 130, 14952–14953. DOI: 10.1021/ja8065754. http://dx.doi.org/10.1021/ja8065754 [Crossref]

  • [17] Chen, S., Cao, Z., & Jiang, S. (2009). Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials, 30, 5892–5896. DOI: 10.1016/j.biomaterials.2009.07.001. http://dx.doi.org/10.1016/j.biomaterials.2009.07.001 [Crossref]

  • [18] Chen, S., & Jiang, S. (2008). An new avenue to nonfouling materials. Advanced Materials, 20, 335–338. DOI: 10.1002/adma.200701164. http://dx.doi.org/10.1002/adma.200701164 [Crossref]

  • [19] Chen, S., Li, L., Zhao, C., & Zheng, J. (2010). Surface hydration, principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 51, 5283–5293. DOI: 10.1016/j.polymer. 2010.08.022. [Crossref]

  • [20] Chen, S., Liu, L., Zhou, J., & Jiang, S. (2003). Controlling antibody orientation on charged self-assembled monolayers. Langmuir, 19, 2859–2864. DOI: 10.1021/la026498v. http://dx.doi.org/10.1021/la026498v [Crossref]

  • [21] Chen, S., Zheng, J., Li, L., & Jiang, S. (2005). Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 127, 14473–14478. DOI: 10.1021/ja054169u. http://dx.doi.org/10.1021/ja054169u [Crossref]

  • [22] Cheng, G., Li, G., Xue, H., Chen, S., Bryers, J. D., & Jiang, S. (2009). Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 30, 5234–5240. DOI: 10.1016/j.biomaterials.2009.05.058. http://dx.doi.org/10.1016/j.biomaterials.2009.05.058 [Crossref]

  • [23] Cheng, G., Mi, L., Cao, Z., Xue, H., Yu, Q., Carr, L., & Jiang, S. (2010). Functionalizable and ultrastable zwitterionic nanogels. Langmuir, 26, 6883–6886. DOI: 10.1021/la100664g. http://dx.doi.org/10.1021/la100664g [Crossref]

  • [24] Cheng, G., Xue, H., Zhang, Z., Chen, S., & Jiang, S. (2008). A switchable biocompatible polymer surface with selfsterilizing and nonfouling capabilities. Angewandte Chemie, 120, 8963–8966. DOI: 10.1002/ange. 200803570. http://dx.doi.org/10.1002/ange.200803570 [Crossref]

  • [25] Chu, L. Q., Knoll, W., & Förch, R. (2006). Pulsed plasma polymerized di(ethylene glycol) monovinyl ether coatings for nonfouling surfaces. Chemistry of Materials, 18, 4840–4844. DOI: 10.1021/cm061217g. http://dx.doi.org/10.1021/cm061217g [Crossref]

  • [26] Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x. http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x [Crossref]

  • [27] Cruz-Monteagudo, M., Borges, F., Cordeiro, M.N. D. S., Cagide Fajin, J. L., Morell, C., Ruiz, R. M., Cañizares-Carmenate, Y., & Dominguez, E. R. (2008). Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. Journal of Combinatorial Chememistry, 10, 897–913. DOI: 10.1021/cc800115y. [Crossref]

  • [28] Dalsin, J. L., Hu, B. H., Lee, B. P., & Messersmith, P. B. (2003). Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society, 125, 4253–4258. DOI: 10.1021/ja0284963. http://dx.doi.org/10.1021/ja0284963 [Crossref]

  • [29] Dávalos-Pantoja, L., Ortega-Vinuesa, J. L., Bastos-González, D., & Hidalgo-álvarez, R. (2001). Colloidal stability of IgG- and IgY-coated latex microspheres. Colloids and Surfaces B: Biointerfaces, 20, 165–175. DOI: 10.1016/s0927-7765(00)00189-2. http://dx.doi.org/10.1016/S0927-7765(00)00189-2 [Crossref]

  • [30] Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 277, 1232–1237. DOI: 10.1126/science.277.5330.1232. http://dx.doi.org/10.1126/science.277.5330.1232 [Crossref]

  • [31] Decher, G., & Schmitt, J. (1992). Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. In C. Helm, M. Lösche, & H. Möhwald (Eds.), Trends in Colloid and Interface Science VI. (pp. 160–164). Berlin/Heidelberg, Germany: Springer. DOI: 10.1007/bfb0116302. http://dx.doi.org/10.1007/BFb0116302 [Crossref]

  • [32] De Vos, K., Girones, J., Popelka, S., Schacht, E., Baets, R., & Bienstman, P. (2009). SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications. Biosensors and Bioelectronics, 24, 2528–2533. DOI: 10.1016/j.bios.2009.01.009. http://dx.doi.org/10.1016/j.bios.2009.01.009 [Crossref]

  • [33] Di Tuoro, D., Portaccio, M., Lepore, M., Arduini, F., Moscone, D., & Mita, D. G. (2010). An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. Journal of Biotechnology, 150, S277. DOI: 10.1016/j.jbiotec.2010.09.196. http://dx.doi.org/10.1016/j.jbiotec.2010.09.196 [Crossref]

  • [34] Durand, N., Boutevin, B., Silly, G., & Améduri, B. (2011). “Grafting from” polymerization of vinylidene fluoride (VDF) from silica to achieve original silica-PVDF core-shells. Macromolecules, 44, 8487–8493. DOI: 10.1021/ma2018167. http://dx.doi.org/10.1021/ma2018167 [Crossref]

  • [35] Fan, X., Lin, L., Dalsin, J. L., & Messersmith, P. B. (2005). Biomimetic anchor for surface-initiated polymerization from metal substrates. Journal of the American Chemical Society, 127, 15843–15847. DOI: 10.1021/ja0532638. http://dx.doi.org/10.1021/ja0532638 [Crossref]

  • [36] Feng, J., Stoddart, S., Weerakoon, K. A., & Chen, W. (2006a). COLL 308-Synthesis of ultra-thin polybutadiene films by surface-initiated-ring-opening-metathesis polymerization. In Abstracts of Papers of the American Chemical Society (Vol. 232). Washington, DC, USA: American Chemical Society.

  • [37] Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2005). Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surfaceinitiated atom transfer radical polymerization. Langmuir, 21, 5980–5987. DOI: 10.1021/la050277i. http://dx.doi.org/10.1021/la050277i [Crossref]

  • [38] Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2006b). Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 1, 50–60. DOI: 10.1116/1.2187495. http://dx.doi.org/10.1116/1.2187495 [Crossref]

  • [39] Ferreira, M., Cheung, J. H., & Rubner, M. F. (1994). Molecular self-assembly of conjugated polyions: a new process for fabricating multilayer thin film heterostructures. Thin Solid Films, 244, 806–809. DOI: 10.1016/0040-6090(94)90575-4. http://dx.doi.org/10.1016/0040-6090(94)90575-4 [Crossref]

  • [40] Frasconi, M., Tortolini, C., Botrè, F., & Mazzei, F. (2010). Multifunctional Au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Analytical Chemistry, 82, 7335–7342. DOI: 10.1021/ac101319k. http://dx.doi.org/10.1021/ac101319k [Crossref]

  • [41] Fristrup, C. J., Jankova, K., & Hvilsted, S. (2009). Surfaceinitiated atom transfer radical polymerization—a technique to develop biofunctional coatings. Soft Matter, 5, 4623–4634. DOI: 10.1039/b821815c. http://dx.doi.org/10.1039/b821815c [Crossref]

  • [42] Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., Slomkowski, S., Millot, M. C., Othmane, A., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011). Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. Langmuir, 27, 9285–9294. DOI: 10.1021/la200290k. [Crossref]

  • [43] Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17. DOI: 10.1016/0003-2670(86)80028-9. http://dx.doi.org/10.1016/0003-2670(86)80028-9 [Crossref]

  • [44] Ghosh, J., Lewitus, D. Y., Chandra, P., Joy, A., Bushman, J., Knight, D., & Kohn, J. (2011). Computational modeling of in vitro biological responses on polymethacrylate surfaces. Polymer, 52, 2650–2660. DOI: 10.1016/j.polymer.2011.04. 014. http://dx.doi.org/10.1016/j.polymer.2011.04.014 [Crossref]

  • [45] Goldfarb, D. L., Burns, S. D., Vyklicky, L., Pfeiffer, D., Lisi, A., Petrillo, K., Arnold, J., Clancy, A., Lang, R. N., Medeiros, D. R., Sanders, D. P., Allen, R. D., Owe-yang, D. C., Noda, K., Tachibana, S., & Shirai, S. (2008). Graded spin-on organic bottom antireflective coating for high NA lithography. In C. L. Henderson (Ed.), Proceedings of SPIE: Advances in Resist Materials and Processing Technology XXV (Vol. 6923). San Jose, CA, USA: SPIE Digital Library. DOI: 10.1117/12.772268. [Crossref]

  • [46] Grande, C. D., Tria, M. C., Jiang, G., Ponnapati, R., & Advincula, R. (2011). Surface-grafted polymers from electropolymerized polythiophene RAFT agent. Macromolecules, 44, 966–975. DOI: 10.1021/ma102065u. http://dx.doi.org/10.1021/ma102065u [Crossref]

  • [47] Gu, H., Ho, P. L., Tsang, K. W. T., Wang, L., & Xu, B. (2003). Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other Grampositive bacteria at ultralow concentration. Journal of the American Chemical Society, 125, 15702–15703. DOI: 10.1021/ja0359310. http://dx.doi.org/10.1021/ja0359310 [Crossref]

  • [48] Gudipati, C. S., Finlay, J. A., Callow, J. A., Callow, M. E., & Wooley, K. L. (2005). The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly (ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir, 21, 3044–3053. DOI: 10.1021/la048015o. http://dx.doi.org/10.1021/la048015o [Crossref]

  • [49] Gurbuz, N., Demirci, S., Yavuz, S., & Caykara, T. (2011). Synthesis of cationic N-[3-(dimethylamino)propyl]methacrylamide brushes on silicon wafer via surface-initiated RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49, 423–431. DOI: 10.1002/pola.24454. http://dx.doi.org/10.1002/pola.24454 [Crossref]

  • [50] Haas, D. E., Quijada, J. N., Picone, S. J., & Birnie, D. P. (2000). Effect of solvent evaporation rate on Skin formation during spin coating of complex solutions. In B. S. Dunn, E. J. A. Pope, H. K. Schmidt, & M. Yamane (Eds.), Proceedings of SPIE: Surface and Interface Physics Papers (Vol. 3943, pp. 280–284). San Jose, CA, USA: SPIE Digital Library. DOI: 10.1117/12.384348. [Crossref]

  • [51] Harris, J. M. (1992). Poly(ethylene glycol) chemistry: Biotechnical and biomedical applications. New York, NY, USA: Plenum Press.

  • [52] He, Y., Hower, J., Chen, S., Bernards, M. T., Chang, Y., & Jiang, S. (2008). Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir, 24, 10358–10364. DOI: 10.1021/la8013046. http://dx.doi.org/10.1021/la8013046 [Crossref]

  • [53] Hobbs, S. K., Shi, G., & Bednarski, M. D. (2003). Synthesis of polymerized thin films for immobilized ligand display in proteomic analysis. Bioconjugate Chemistry, 14, 526–531. DOI: 10.1021/bc025637h. http://dx.doi.org/10.1021/bc025637h [Crossref]

  • [54] Holland, N. B., Qiu, Y., Ruegsegger, M., & Marchant, R. E. (1998). Biomimetic engineering of non-adhesive glycocalyxlike surfaces using oligosaccharide surfactant polymers. Nature, 392, 799–801. DOI: 10.1038/33894. http://dx.doi.org/10.1038/33894 [Crossref]

  • [55] Horák, D., Shagotova, T., Mitina, N., Trchová, M., Boiko, N., Babič, M., Stoika, R., Kovářová, J., Hevus, O., Beneš, M. J., Klyuchivska, O., Holler, P., & Zaichenko, A. (2011). Surfaceinitiated polymerization of 2-hydroxyethyl methacrylate from heterotelechelic oligoperoxide-coated Γ-Fe2O3 nanoparticles and their engulfment by mammalian cells. Chemistry of Materials, 23, 2637–2649. DOI: 10.1021/cm2004215. http://dx.doi.org/10.1021/cm2004215

  • [56] Hower, J. C., Bernards, M. T., Chen, S., Tsao, H. K., Sheng, Y. J., & Jiang, S. (2009). Hydration of “nonfouling” functional groups. The Journal of Physical Chemistry B, 113, 197–201. DOI: 10.1021/jp8065713. http://dx.doi.org/10.1021/jp8065713 [Crossref]

  • [57] Hu, Z. K., Finlay, J. A., Callow, M. E., & De Simone, J. M. (2009). Novel perfluoropolyethers as fouling release coatings: Investigation of structure-property relationships relevant to fouling resistance and release. In Abstracts of Papers of the American Chemical Society (Vol. 237). Washington, DC, USA: American Chemical Society.

  • [58] Indyk, H. E. (2011). An optical biosensor assay for the determination of folate in milk and nutritional dairy products. International Dairy Journal, 21, 783–789. DOI: 10.1016/j.idairyj.2011.03.013. http://dx.doi.org/10.1016/j.idairyj.2011.03.013 [Crossref]

  • [59] Ionov, L., & Diez, S. (2009). Environment-friendly photolithography using poly(N-isopropylacrylamide)-based thermoresponsive photoresists. Journal of the American Chemical Society, 131, 13315–13319. DOI: 10.1021/ja902660s. http://dx.doi.org/10.1021/ja902660s [Crossref]

  • [60] Ishihara, K. (2000). New polymeric biomaterials-phospholipid polymers with a biocompatible surface. Frontiers of Medical & Biological Engineering, 10, 83–95. DOI: 10.1163/15685570052061946. http://dx.doi.org/10.1163/15685570052061946 [Crossref]

  • [61] Issa, A. A., Al-Degs, Y. S., & Al-Rabady, N. A. (2008). Deposition of two natural clays on a Pt surface using potentiostatic and spin-coating techniques: a comparative study. Clay Minerals, 43, 501–510. DOI: 10.1180/claymin. 2008.043.3.13. http://dx.doi.org/10.1180/claymin.2008.043.3.13 [Crossref]

  • [62] Jampala, S. N., Sarmadi, M., Somers, E. B., Wong, A. C. L., & Denes, F. S. (2008). Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir, 24, 8583–8591. DOI: 10.1021/la800405x. http://dx.doi.org/10.1021/la800405x [Crossref]

  • [63] Jiang, S., & Cao, Z. (2010). Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22, 920–932. DOI: 10.1002/adma.200901407. http://dx.doi.org/10.1002/adma.200901407 [Crossref]

  • [64] Jung, H. J., Chang, J., Park, Y. J., Kang, S. J., Lotz, B., Huh, J., & Park, C. (2009). Shear-induced ordering of ferroelectric crystals in spin-coated thin poly(vinylidene fluorideco-trifluoroethylene) films. Macromolecules, 42, 4148–4154. DOI: 10.1021/ma900422n. http://dx.doi.org/10.1021/ma900422n [Crossref]

  • [65] Kessler, D., Jochum, F. D., Choi, J., Char, K., & Theato, P. (2011). Reactive surface coatings based on polysilsesquiox anes: Universal method toward light-responsive surfaces. ACS Applied Materials & Interfaces, 3, 124–128. DOI: 10.1021/am1010892. http://dx.doi.org/10.1021/am1010892 [Crossref]

  • [66] Kessler, D., Roth, P. J., & Theato, P. (2009). Reactive surface coatings based on polysilsesquioxanes: Controlled functionalization for specific protein immobilization. Langmuir, 25, 10068–10076. DOI: 10.1021/la901878h. http://dx.doi.org/10.1021/la901878h [Crossref]

  • [67] Kim, Y. P., Hong, M.Y., Kim, J., Oh, E., Shon, H. K., Moon, D. W., Kim, H. S., & Lee, T. G. (2007a). Quantitative analysis of surface-immobilized protein by TOF-SIMS: Effects of protein orientation and trehalose additive. Analytical Chemistry, 79, 1377–1385. DOI: 10.1021/ac0616005. http://dx.doi.org/10.1021/ac0616005 [Crossref]

  • [68] Kim, Y. H., Jung, M. S., Yoon, D. K., Jee, M. G., & Jung, H. T. (2007b). A solution processible semiconducting polymer interlayer for blue light-emitting diodes. Nanotechnology, 18, 175608. DOI: 10.1088/0957-4484/18/17/175608. http://dx.doi.org/10.1088/0957-4484/18/17/175608 [Crossref]

  • [69] Kingshott, P., Thissen, H., & Griesser, H. J. (2002). Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials, 23, 2043–2056. DOI: 10.1016/s0142-9612(01)00334-9. http://dx.doi.org/10.1016/S0142-9612(01)00334-9 [Crossref]

  • [70] Konradi, R., Pidhatika, B., Mühlebach, A., & Textort, M. (2008). Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir, 24, 613–616. DOI: 10.1021/la702917z. http://dx.doi.org/10.1021/la702917z [Crossref]

  • [71] Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., & Jiang, S. (2004). DNA-directed protein immobilization on mixed selfassembled monolayers via a streptavidin bridge. Langmuir, 20, 8090–8095. DOI: 10.1021/la049867r. http://dx.doi.org/10.1021/la049867r [Crossref]

  • [72] Ladd, J., Zhang, Z., Chen, S., Hower, J. C., & Jiang, S. (2008). Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 9, 1357–1361. DOI: 10.1021/bm701301s. http://dx.doi.org/10.1021/bm701301s [Crossref]

  • [73] Lee, R. S., Chen, W. H., & Lin, J. H. (2011). Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer, 52, 2180–2188. DOI: 10.1016/j.polymer.2011.03.020. http://dx.doi.org/10.1016/j.polymer.2011.03.020 [Crossref]

  • [74] Lerum, M. F. Z., & Chen, W. (2011). Surface-initiated ringopening metathesis polymerization in the vapor phase: An efficient method for grafting cyclic olefins with low strain energies. Langmuir, 27, 5403–5409. DOI: 10.1021/la2002892. http://dx.doi.org/10.1021/la2002892 [Crossref]

  • [75] Li, G., Xue, H., Gao, C., Zhang, F., & Jiang, S. (2010). Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules, 43, 14–16. DOI: 10.1021/ma902029s. http://dx.doi.org/10.1021/ma902029s [Crossref]

  • [76] Liu, G., & Lin, Y. (2006). Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry, 78, 835–843. DOI: 10.1021/ac051559q. http://dx.doi.org/10.1021/ac051559q [Crossref]

  • [77] Liu, Y. C., Wu, J. Y., Wang, S. C., Chwu, J. W., Lin, C. C., Chen, M. S., & Huang, T. (2008). Novel defect-repairing method for etched-thinning LCDs. In SID International Symposium Digest of Technical Papers, 39, 249–251. DOI: 10.1889/1.3069636. http://dx.doi.org/10.1889/1.3069636 [Crossref]

  • [78] Lu, D. F., Qi, Z. M., & Liu, R. P. (2011). An interferometric biosensor composed of a prism-chamber assembly and a composite waveguide with a Ta2O5 nanometric layer. Sensors and Actuators B: Chemical, 157, 575–580. DOI: 10.1016/j.snb.2011.05.025. http://dx.doi.org/10.1016/j.snb.2011.05.025 [Crossref]

  • [79] Lubambo, A. F., Lucyszyn, N., Petzhold, C. L., de Camargo, P. C., Sierakowski, M. R., Schreiner, W. H., & Saul, C. K. (2011). Self-assembled polystyrene/xyloglucan nanospheres from spin coating evaporating mixtures. Carbohydrate Polymers, 84, 126–132. DOI: 10.1016/j.carbpol.2010.11.010. http://dx.doi.org/10.1016/j.carbpol.2010.11.010 [Crossref]

  • [80] Luk, Y. Y., Kato, M., & Mrksich, M. (2000). Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 16, 9604–9608. DOI: 10.1021/la0004653. http://dx.doi.org/10.1021/la0004653 [Crossref]

  • [81] Ma, H., He, J., Liu, X., Gan, J., Jin, G., & Zhou, J. (2010). Surface initiated polymerization from substrates of low initiator density and its applications in biosensors. ACS Applied Materials & Interfaces, 2, 3223–3230. DOI: 10.1021/am1006832. http://dx.doi.org/10.1021/am1006832 [Crossref]

  • [82] Ma, H., Hyun, J., Stiller, P., & Chilkoti, A. (2004). “Nonfouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 16, 338–341. DOI: 10.1002/adma.200305830. http://dx.doi.org/10.1002/adma.200305830 [Crossref]

  • [83] Mahadeva, S. K., & Kim, J. (2011). Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 157, 177–182. DOI: 10.1016/j.snb.2011.03.046. http://dx.doi.org/10.1016/j.snb.2011.03.046 [Crossref]

  • [84] Mahmud, G., Huda, S., Yang, W., Kandere-Grzybowska, K., Pilans, D., Jiang, S., & Grzybowski, B. A. (2011). Carboxybetaine methacrylate polymers offer robust, long-term protection against cell adhesion. Langmuir, 27, 10800–10804. DOI: 10.1021/la201066y. http://dx.doi.org/10.1021/la201066y [Crossref]

  • [85] Maier, W. F., Stöwe, K., & Sieg, S. (2007). Combinatorial and high-throughput materials science. Angewandte Chemie International Edition, 46, 6016–6067. DOI: 10.1002/anie.200603675. http://dx.doi.org/10.1002/anie.200603675 [Crossref]

  • [86] Martwiset, S., Koh, A. E., & Chen, W. (2006). Nonfouling characteristics of dextran-containing surfaces. Langmuir, 22, 8192–8196. DOI: 10.1021/la061064b. http://dx.doi.org/10.1021/la061064b [Crossref]

  • [87] McMahon, C. P., Rocchitta, G., Serra, P. A., Kirwan, S. M., Lowry, J. P., & O’Neill, R. D. (2006). Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Analytical Chemistry, 78, 2352–2359. DOI: 10.1021/ac0518194. http://dx.doi.org/10.1021/ac0518194 [Crossref]

  • [88] Meier, M. A. R., & Schubert, U. S. (2004). Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials. Journal of Materials Chemistry, 14, 3289–3299. DOI: 10.1039/b406497f. http://dx.doi.org/10.1039/b406497f [Crossref]

  • [89] Merulla, D., Buffi, N., van Lintel, H., Renaud, P., & van der Meer, J. R. (2010). Development of a bacterial biosensor for arsenite detection. Journal of Biotechnology, 150, S224–S225. DOI: 10.1016/j.jbiotec.2010.09.058. http://dx.doi.org/10.1016/j.jbiotec.2010.09.058 [Crossref]

  • [90] Mhamdi, L., Picart, C., Lagneau, C., Othmane, A., Grosgogeat, B., Jaffrezic-Renault, N., & Ponsonnet, L. (2006). Study of the polyelectrolyte multilayer thin films’ properties and correlation with the behavior of the human gingival fibroblasts. Materials Science and Engeneering: C, 26, 273–281. DOI: 10.1016/j.msec.2005.10.049. http://dx.doi.org/10.1016/j.msec.2005.10.049 [Crossref]

  • [91] Min, H., Park, J. W., Shon, H. K., Moon, D. W., & Lee, T. G. (2008). ToF-SIMS study on the cleaning methods of Au surface and their effects on the reproducibility of self-assembled monolayers. Applied Surface Science, 255, 1025–1028. DOI: 10.1016/j.apsusc.2008.05.099. http://dx.doi.org/10.1016/j.apsusc.2008.05.099 [Crossref]

  • [92] Minko, S., Patil, S., Datsyuk, V., Simon, F., Eichhorn, K. J., Motornov, M., Usov, D., Tokarev, I., & Stamm, M. (2002). Synthesis of adaptive polymer brushes via “grafting to” approach from melt. Langmuir, 18, 289–296. DOI: 10.1021/la015637q. http://dx.doi.org/10.1021/la015637q [Crossref]

  • [93] Mo, Y., & Bai, M. (2008). Preparation and adhesion of a dualcomponent self-assembled dual-layer film on silicon by a dip-coating nanoparticles method. The Journal of Physical Chemistry C, 112, 11257–11264. DOI: 10.1021/jp802608m. http://dx.doi.org/10.1021/jp802608m [Crossref]

  • [94] Mouri, M., Ikawa, T., Narita, M., Hoshino, F., & Watanabe, O. (2010). Orientation control of photo-immobilized antibodies on the surface of azobenzene-containing polymers by the introduction of functional groups. Macromolecular Bioscience, 10, 612–620. DOI: 10.1002/mabi.200900394. http://dx.doi.org/10.1002/mabi.200900394 [Crossref]

  • [95] Mrabet, B., Nguyen, M. N., Majbri, A., Mahouche, S., Turmine, M., Bakhrouf, A., & Chehimi, M. M. (2009). Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface Science, 603, 2422–2429. DOI: 10.1016/j.susc.2009.05.020. http://dx.doi.org/10.1016/j.susc.2009.05.020 [Crossref]

  • [96] Nakayama, H., Oshima, T., Shinmyo, A., & Ogasawara, N. (2010). Development of whole-cell biosensor using a moderate halophilic bacterium, Halomonas elongata, for monitoring metals in high salinity environments. Journal of Biotechnology, 150, S226. DOI: 10.1016/j.jbiotec.2010.09.062. http://dx.doi.org/10.1016/j.jbiotec.2010.09.062 [Crossref]

  • [97] Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301, 1884–1886. DOI: 10.1126/science. 1088755. http://dx.doi.org/10.1126/science.1088755 [Crossref]

  • [98] Neubert, H., Jacoby, E. S., Bansal, S. S., Iles, R. K., Cowan, D. A., & Kicman, A. T. (2002). Enhanced affinity capture MALDI-TOFMS: Orientation of an immunoglobulin G using recombinant protein G. Analytical Chemistry, 74, 3677–3683. DOI: 10.1021/ac025558z. http://dx.doi.org/10.1021/ac025558z [Crossref]

  • [99] Orski, S. V., Fries, K. H., Sontag, S. K., & Locklin, J. (2011). Fabrication of nanostructures using polymer brushes. Journal of Materials Chemistry, 21, 14135–14149. DOI: 10.1039/c1jm11039j. http://dx.doi.org/10.1039/c1jm11039j [Crossref]

  • [100] Pathak, S., Singh, A. K., McElhanon, J. R., & Dentinger, P. M. (2004). Dendrimer-activated surfaces for high density and high activity protein chip applications. Langmuir, 20, 6075–6079. DOI: 10.1021/la036271f. http://dx.doi.org/10.1021/la036271f [Crossref]

  • [101] Pertsin, A. J., & Grunze, M. (2000). Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 16, 8829–8841. DOI: 10.1021/la000340y. http://dx.doi.org/10.1021/la000340y [Crossref]

  • [102] Peyman, S. A., Iles, A., & Pamme, N. (2009). Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab on a Chip, 9, 3110–3117. DOI: 10.1039/b904724g. http://dx.doi.org/10.1039/b904724g [Crossref]

  • [103] Peyratout, C. S., & Dähne, L. (2004). Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angewandte Chemie International Edition, 43, 3762–3783. DOI: 10.1002/anie.200300568. http://dx.doi.org/10.1002/anie.200300568 [Crossref]

  • [104] Picart, C. (2008). Polyelectrolyte multilayer films: From physico-chemical properties to the control of cellular processes. Current Medicinal Chemistry, 15, 685–697. DOI: 10.2174/092986708783885219. http://dx.doi.org/10.2174/092986708783885219 [Crossref]

  • [105] Potyrailo, R. A., McCloskey, P. J., Wroczynski, R. J., & Morris, W. G. (2006). High-throughput determination of quantitative structure-property relationships using a resonant multisensor system: Solvent resistance of bisphenol A polycarbonate copolymers. Analytical Chemistry, 78, 3090–3096. DOI: 10.1021/ac0519662. http://dx.doi.org/10.1021/ac0519662 [Crossref]

  • [106] Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., & Lam, H. (2011). Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Combinatorial Science, 13, 579–633. DOI: 10.1021/co200007w. http://dx.doi.org/10.1021/co200007w [Crossref]

  • [107] Rahane, S. B., Kilbey, S. M., & Metters, A. T. (2008). Kinetic modeling of surface-initiated photoiniferter-mediated photopolymerization in presence of tetraethylthiuram disulfide. Macromolecules, 41, 9612–9618. DOI: 10.1021/ma702516w. http://dx.doi.org/10.1021/ma702516w [Crossref]

  • [108] Rahane, S. B., Metters, A. T., & Kilbey, S. M. (2006). Impact of added tetraethylthiuram disulfide deactivator on the kinetics of growth and reinitiation of poly(methyl methacrylate) brushes made by surface-initiated photoiniferter-mediated photopolymerization. Macromolecules, 39, 8987–8991. DOI: 10.1021/ma0617217. http://dx.doi.org/10.1021/ma0617217 [Crossref]

  • [109] Rahane, S. B., Metters, A. T., & Kilbey, S. M. (2010). Modeling of reinitiation ability of polymer brushes grown by surface-initiated photoiniferter-mediated photopolymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48, 1586–1593. DOI: 10.1002/pola.23913. http://dx.doi.org/10.1002/pola.23913 [Crossref]

  • [110] Ramanathan, K., Bangar, M. A., Yun, M., Chen, W., Myung, N. V., & Mulchandani, A. (2005). Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. Journal of the American Chemical Society, 127, 496–497. DOI: 10.1021/ja044486l. http://dx.doi.org/10.1021/ja044486l [Crossref]

  • [111] Reynolds, C. H. (1999). Designing diverse and focused combinatorial libraries of synthetic polymers. Journal of Combinatorial Chemistry, 1, 297–306. DOI: 10.1021/cc9900044. http://dx.doi.org/10.1021/cc9900044 [Crossref]

  • [112] Rodriguez-Emmenegger, C., Avramenko, O. A., Brynda, E., Skvor, J., & Bologna Alles, A. (2011). Poly(HEMA) brushes emerging as a new platform for direct detection of food pathogen in milk samples. Biosensors and Bioelectronics, 26, 4545–4551. DOI: 10.1016/j.bios.2011.05.021. http://dx.doi.org/10.1016/j.bios.2011.05.021 [Crossref]

  • [113] Rogers, D., & Hopfinger, A. J. (1994). Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. Journal of Chemical Information and Modeling, 34, 854–866. DOI: 10.1021/ci00020a020. http://dx.doi.org/10.1021/ci00020a020 [Crossref]

  • [114] Sardesai, N. P., Barron, J. C., & Rusling, J. F. (2011). Carbon nanotube microwell array for sensitive electrochemilu-minescent detection of cancer biomarker proteins. Analytical Chemistry, 83, 6698–6703. DOI: 10.1021/ac201292q. [Crossref]

  • [115] Schubert, D. W., & Dunkel, T. (2003). Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Materials Research Innovations, 7, 314–321. DOI: 10.1007/s10019-003-0270-2. http://dx.doi.org/10.1007/s10019-003-0270-2 [Crossref]

  • [116] Shen, M., Wagner, M. S., Castner, D. G., Ratner, B. D., & Horbett, T. A. (2003). Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 19, 1692–1699. DOI: 10.1021/la0259297. http://dx.doi.org/10.1021/la0259297 [Crossref]

  • [117] Shimura, M., & Hayakawa, T. (2010). Development of a biosensor for toluene in water. Journal of Biotechnology, 150, S214. DOI: 10.1016/j.jbiotec.2010.09.033. http://dx.doi.org/10.1016/j.jbiotec.2010.09.033 [Crossref]

  • [118] Statz, A. R., Barron, A. E., & Messersmith, P. B. (2008). Protein, cell and bacterial fouling resistance of polypeptoidmodified surfaces: effect of side-chain chemistry. Soft Matter, 4, 131–139. DOI: 10.1039/b711944e. http://dx.doi.org/10.1039/b711944e [Crossref]

  • [119] Statz, A. R., Meagher, R. J., Barron, A. E., & Messersmith, P. B. (2005). New peptidomimetic polymers for antifouling surfaces. Journal of the American Chemical Society, 127, 7972–7973. DOI: 10.1021/ja0522534. http://dx.doi.org/10.1021/ja0522534 [Crossref]

  • [120] Stein, J., Truby, K., Wood, C. D., Takemori, M., Vallance, M., Swain, G., Kavanagh, C., Kovach, B., Schultz, M., Wiebe, D., Holm, E., Montemarano, J., Wendt, D., Smith, C., & Meyer, A. (2003). Structure-property relationships of silicone biofouling-release coatings: Effect of silicone network architecture on pseudobarnacle attachment strengths. Biofouling, 19, 87–94. DOI: 10.1080/0892701031000095221. http://dx.doi.org/10.1080/0892701031000095221 [Crossref]

  • [121] Steinhauer, C., Wingren, C., Khan, F., He, M., Taussig, M. J., & Borrebaeck, C. A. K. (2006). Improved affinity coupling for antibody microarrays: Engineering of double-(His)6-tagged single framework recombinant antibody fragments. PROTEOMICS, 6, 4227–4234. DOI: 10.1002/pmic.200600036. http://dx.doi.org/10.1002/pmic.200600036 [Crossref]

  • [122] Steitz, R., Leiner, V., Siebrecht, R., & v. Klitzing, R. (2000). Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, 63–70. DOI: 10.1016/s0927-7757(99)00431-8. http://dx.doi.org/10.1016/S0927-7757(99)00431-8 [Crossref]

  • [123] Stockton, W. B., & Rubner, M. F. (1997). Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules, 30, 2717–2725. DOI: 10.1021/ma9700486. http://dx.doi.org/10.1021/ma9700486 [Crossref]

  • [124] Suh, C., Rajagopalan, A., Li, X., & Rajan, K. (2002). The application of Principal Component Analysis to materials science data. Data Science Journal, 1, 19–26. DOI: 10.2481/dsj.1.19. http://dx.doi.org/10.2481/dsj.1.19 [Crossref]

  • [125] Swain, M. D., Octain, J., & Benson, D. E. (2008). Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. Bioconjugate Chemistry, 19, 2520–2526. DOI: 10.1021/bc8003952. http://dx.doi.org/10.1021/bc8003952 [Crossref]

  • [126] Tajima, N., Takai, M., & Ishihara, K. (2011). Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity. Analytical Chemistry, 83, 1969–1976. DOI: 10.1021/ac1026786. http://dx.doi.org/10.1021/ac1026786 [Crossref]

  • [127] Tawa, K., Yokota, Y., Kintaka, K., Nishii, J., & Nakaoki, T. (2011). An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range. Sensors and Actuators B: Chemical, 157, 703–709. DOI: 10.1016/j.snb.2011.04.086. http://dx.doi.org/10.1016/j.snb.2011.04.086 [Crossref]

  • [128] Taylor, W., & Jones, R. A. L. (2010). Producing high-density high-molecular-weight polymer brushes by a “grafting to” method from a concentrated homopolymer solution. Langmuir, 26, 13954–13958. DOI: 10.1021/la101881j. http://dx.doi.org/10.1021/la101881j [Crossref]

  • [129] Tetko, I. V., Villa, A. E. P., & Livingstone, D. J. (1996). Neural network studies. 2. Variable selection. Journal of Chemical Information and Modeling, 36, 794–803. DOI: 10.1021/ci950204c. http://dx.doi.org/10.1021/ci950204c [Crossref]

  • [130] Tria, M. C. R., & Advincula, R. C. (2011). Electropatterning of binary polymer brushes by surface-initiated RAFT and ATRP. Macromolecular Rapid Communications, 32, 966–971. DOI: 10.1002/marc.201100050. http://dx.doi.org/10.1002/marc.201100050 [Crossref]

  • [131] Tsai, H. Y., Chan, J. R., Li, Y. C., Cheng, F. C., & Bor Fuh, C. (2010). Determination of hepatitis B surface antigen using magnetic immunoassays in a thin channel. Biosensors and Bioelectronics, 25, 2701–2705. DOI: 10.1016/j.bios.2010.04.035. http://dx.doi.org/10.1016/j.bios.2010.04.035 [Crossref]

  • [132] v. Klitzing, R. (2006). Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 8, 5012–5033. DOI: 10.1039/b607760a. http://dx.doi.org/10.1039/b607760a [Crossref]

  • [133] Vaisocherová, H., Yang, W., Zhang, Z., Cao, Z., Cheng, G., Piliarik, M., Homola, J., & Jiang, S. (2008). Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry, 80, 7894–7901. DOI: 10.1021/ac8015888. http://dx.doi.org/10.1021/ac8015888 [Crossref]

  • [134] Vaisocherová, H., Zhang, Z., Yang, W., Cao, Z., Cheng, G., Taylor, A. D., Piliarik, M., Homola, J., & Jiang, S. (2009). Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization. Biosensors and Bioelectronics, 24, 1924–1930. DOI: 10.1016/j.bios.2008.09.035. http://dx.doi.org/10.1016/j.bios.2008.09.035 [Crossref]

  • [135] Vallina-García, R., García-Suárez, M. del M., Fernández-Abedul, M. T., Méndez, F. J., & Costa-García, A. (2007). Oriented immobilisation of anti-pneumolysin Fab through a histidine tag for electrochemical immunosensors. Biosensors and Bioelectronics, 23, 210–217. DOI: 10.1016/j.bios.2007.04.001. http://dx.doi.org/10.1016/j.bios.2007.04.001 [Crossref]

  • [136] Vijayendran, R. A., & Leckband, D. E. (2001). A quantitative assessment of heterogeneity for surface-immobilized proteins. Analytical Chemistry, 73, 471–480. DOI: 10.1021/ac000523p. http://dx.doi.org/10.1021/ac000523p [Crossref]

  • [137] Wang, Y., Dostalek, J., & Knoll, W. (2011a). Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Analytical Chemistry, 83, 6202–6207. DOI: 10.1021/ac200751s. http://dx.doi.org/10.1021/ac200751s [Crossref]

  • [138] Wang, L., Fu, Y., Wang, Z., Fan, Y., & Zhang, X. (1999). Investigation into an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Langmuir, 15, 1360–1363. DOI: 10.1021/la981181+. http://dx.doi.org/10.1021/la981181+ [Crossref]

  • [139] Wang, G., Gao, Y., Huang, H., & Su, X. (2010). Multiplex immunoassays of equine virus based on fluorescent encoded magnetic composite nanoparticles. Analytical and Bioanalytical Chemistry, 398, 805–813. DOI: 10.1007/s00216-010-4001-4. http://dx.doi.org/10.1007/s00216-010-4001-4 [Crossref]

  • [140] Wang, J. S., & Matyjaszewski, K. (1995). Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117, 5614–5615. DOI: 10.1021/ja00125a035. [Crossref]

  • [141] Wang, J., Song, D., Wang, L., Zhang, H., Zhang, H., & Sun, Y. (2011b). Design and performances of immunoassay based on SPR biosensor with Au/Ag alloy nanocomposites. Sensors and Actuators B: Chemical, 157, 547–553. DOI: 10.1016/j.snb.2011.05.020. http://dx.doi.org/10.1016/j.snb.2011.05.020 [Crossref]

  • [142] Wang, L., Tang, G., & Xu, Z. K. (2008). Comparison of waterbased and solvent-based tape casting for preparing multilayer ZnO varistors. Journal of the American Ceramic Society, 91, 3742–3745. DOI: 10.1111/j.1551-2916.2008.02677.x. http://dx.doi.org/10.1111/j.1551-2916.2008.02677.x [Crossref]

  • [143] Wang, B., Weldon, A. L., Kumnorkaew, P., Xu, B., Gilchrist, J. F., & Cheng, X. (2011c). Effect of surface nanotopography on immunoaffinity cell capture in microfluidic devices. Langmuir, 27, 11229–11237. DOI: 10.1021/la2015868. http://dx.doi.org/10.1021/la2015868 [Crossref]

  • [144] Whitcombe, M. J., Chianella, I., Larcombe, L., Piletsky, S. A., Noble, J., Porter, R., & Horgan, A. (2011). The rational development of molecularly imprinted polymer-based sensors for protein detection. Chemical Society Reviews, 40, 1547–1571. DOI: 10.1039/c0cs00049c. http://dx.doi.org/10.1039/c0cs00049c [Crossref]

  • [145] White, A., & Jiang, S. (2011). Local and bulk hydration of zwitterionic glycine and its analogues through molecular simulations. The Journal of Physical Chemistry B, 115, 660–667. DOI: 10.1021/jp1067654. http://dx.doi.org/10.1021/jp1067654 [Crossref]

  • [146] Wichterle, O., & Lím, D. (1960). Hydrophilic gels for biological use. Nature, 185, 117–118. DOI: 10.1038/185117a0. http://dx.doi.org/10.1038/185117a0 [Crossref]

  • [147] Wyszogrodzka, M., & Haag, R. (2009). Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: A detailed study of their protein resistance. Biomacromolecules, 10, 1043–1054. DOI: 10.1021/bm801093t. http://dx.doi.org/10.1021/bm801093t [Crossref]

  • [148] Yang, W., Chen, S., Cheng, G., Vaisocherová, H., Xue, H., Li, W., Zhang, J., & Jiang, S. (2008). Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir, 24, 9211–9214. DOI: 10.1021/la801487f. http://dx.doi.org/10.1021/la801487f [Crossref]

  • [149] Yang, M., Tsang, E. M. W., Wang, Y. A., Peng, X., & Yu, H. Z. (2005). Bioreactive surfaces prepared via the self-assembly of dendron thiols and subsequent dendrimer bridging reactions. Langmuir, 21, 1858–1865. DOI: 10.1021/la047459h. http://dx.doi.org/10.1021/la047459h [Crossref]

  • [150] Yang, W., Xue, H., Li, W., Zhang, J., & Jiang, S. (2009). Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 25, 11911–11916. DOI: 10.1021/la9015788. http://dx.doi.org/10.1021/la9015788 [Crossref]

  • [151] Ye, S., Majumdar, P., Chisholm, B., Stafslien, S., & Chen, Z. (2010a). Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy. Langmuir, 26, 16455–16462. DOI: 10.1021/la1001539. http://dx.doi.org/10.1021/la1001539 [Crossref]

  • [152] Ye, S., Nguyen, K. T., Boughton, A. P., Mello, C. M., & Chen, Z. (2010b). Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ. Langmuir, 26, 6471–6477. DOI: 10.1021/la903932w. http://dx.doi.org/10.1021/la903932w [Crossref]

  • [153] Ye, F., Wu, C., Jin, Y., Wang, M., Chan, Y. H., Yu, J., Sun, W., Hayden, S., & Chiu, D. T. (2012). A compact nad highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chemical Communications, 48, 1778–1780. DOI: 10.1039/c2cc16486h. http://dx.doi.org/10.1039/c2cc16486h [Crossref]

  • [154] Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50, 75–104. DOI: 10.1016/j.porgcoat.2003.06.001. http://dx.doi.org/10.1016/j.porgcoat.2003.06.001 [Crossref]

  • [155] Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J. D., Kim, S. N., Gillespie, J., Gutkind, J. S., Papadimitrakopoulos, F., & Rusling, J. F. (2006). Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society, 128, 11199–11205. DOI: 10.1021/ja062117e. http://dx.doi.org/10.1021/ja062117e [Crossref]

  • [156] Yuan, S., Wan, D., Liang, B., Pehkonen, S. O., Ting, Y. P., Neoh, K. G., & Kang, E. T. (2011). Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir, 27, 2761–2774. DOI: 10.1021/la104442f. http://dx.doi.org/10.1021/la104442f [Crossref]

  • [157] Zan, H. W., & Hsu, T. Y. (2011). Stable encapsulated organic TFT with a spin-coated poly(4-vinylphenol-co-methyl methacrylate) dielectric. Electron Device Letters, IEEE, 32, 1131–1133. DOI: 10.1109/led.2011.2155026. http://dx.doi.org/10.1109/LED.2011.2155026 [Crossref]

  • [158] Zhang, Z., Chen, S., & Jiang, S. (2006). Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 7, 3311–3315. DOI: 10.1021/bm060750m. http://dx.doi.org/10.1021/bm060750m [Crossref]

  • [159] Zhang, M., & Horbett, T. A. (2009). Tetraglyme coatings reduce fibrinogen and von Willebrand factor adsorption and platelet adhesion under both static and flow conditions. Journal of Biomedical Materials Research Part A, 89A, 791–803. DOI: 10.1002/jbm.a.32085. http://dx.doi.org/10.1002/jbm.a.32085 [Crossref]

  • [160] Zhang, H., Lee, M. Y., Hogg, M. G., Dordick, J. S., & Sharfstein, S. T. (2010a). Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano, 4, 4733–4743. DOI: 10.1021/nn9018812. http://dx.doi.org/10.1021/nn9018812 [Crossref]

  • [161] Zhang, X., Teng, Y., Fu, Y., Xu, L., Zhang, S., He, B., Wang, C., & Zhang, W. (2010b). Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Analytical Chemistry, 82, 9455–9460. DOI: 10.1021/ac102132p. http://dx.doi.org/10.1021/ac102132p [Crossref]

  • [162] Zhang, Z., Zhang, M., Chen, S., Horbett, T. A., Ratner, B. D., & Jiang, S. (2008). Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 29, 4285–4291. DOI: 10.1016/j.biomaterials.2008.07.039. http://dx.doi.org/10.1016/j.biomaterials.2008.07.039 [Crossref]

  • [163] Zhao, C., Li, L., Wang, Q., Yu, Q., & Zheng, J. (2011). Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir, 27, 4906–4913. DOI: 10.1021/la200061h. http://dx.doi.org/10.1021/la200061h [Crossref]

  • [164] Zhao, C., Li, L., & Zheng, J. (2010). Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization. Langmuir, 26, 17375–17382. DOI: 10.1021/la103382j. http://dx.doi.org/10.1021/la103382j [Crossref]

  • [165] Zhao, C., & Zheng, J. (2011). Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability. Biomacromolecules, 12, 4071–4079. DOI: 10.1021/bm2011455. http://dx.doi.org/10.1021/bm2011455 [Crossref]

  • [166] Zheng, J., Li, L., Chen, S., & Jiang, S. (2004). Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 20, 8931–8938. DOI: 10.1021/la036345n. http://dx.doi.org/10.1021/la036345n [Crossref]

  • [167] Zheng, J., Li, L., Tsao, H. K., Sheng, Y. J., Chen, S., & Jiang, S. (2005). Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophysical Journal, 89, 158–166. DOI: 10.1529/biophysj.105.059428. http://dx.doi.org/10.1529/biophysj.105.059428 [Crossref]

  • [168] Zhou, J., Chen, S., & Jiang, S. (2003). Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir, 19, 3472–3478. DOI: 10.1021/la026871z. http://dx.doi.org/10.1021/la026871z [Crossref]

About the article

Published Online: 2012-04-05

Published in Print: 2012-05-01



Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0147-1. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Mohamed Guerrouache, Ahmed M. Khalil, SeydinaIbrahima Kebe, Benjamin Le Droumaguet, Samia Mahouche-Chergui, and Benjamin Carbonnier
Surface Innovations, 2015, Volume 3, Number 2, Page 84
[3]
Kye J. Robinson, Jacob W. Coffey, David A. Muller, Paul R. Young, Mark A. F. Kendall, Kristofer J. Thurecht, Lisbeth Grøndahl, and Simon R. Corrie
Biointerphases, 2015, Volume 10, Number 4, Page 04A305
[4]
Mu-Huan Chi, Chun-Wei Chang, Hao-Wen Ko, Chun-Hsien Su, Chih-Wei Lee, Chi-How Peng, and Jiun-Tai Chen
Macromolecules, 2015, Page 150826103920008
[5]
Monika Gosecka, Joanna Pietrasik, Philippe Decorse, Bartosz Glebocki, Mohamed M. Chehimi, Stanislaw Slomkowski, and Teresa Basinska
Langmuir, 2015, Volume 31, Number 17, Page 4853
[6]
Sean Lowe, Neil M. O'Brien-Simpson, and Luke A. Connal
Polym. Chem., 2015, Volume 6, Number 2, Page 198
[7]
Sonia Sheikh, Christophe Blaszykowski, Robert Nolan, Damien Thompson, and Michael Thompson
Journal of Colloid and Interface Science, 2015, Volume 437, Page 197
[8]
Lutz Tauhardt, Marion Frant, David Pretzel, Matthias Hartlieb, Christian Bücher, Gerhard Hildebrand, Bernd Schröter, Christine Weber, Kristian Kempe, Michael Gottschaldt, Klaus Liefeith, and Ulrich S. Schubert
Journal of Materials Chemistry B, 2014, Volume 2, Number 30, Page 4883
[9]
Zakaria Salmi, Aazdine Lamouri, Philippe Decorse, Mohamed Jouini, Amine Boussadi, Jocelyn Achard, Alix Gicquel, Samia Mahouche-Chergui, Benjamin Carbonnier, and Mohamed M. Chehimi
Diamond and Related Materials, 2013, Volume 40, Page 60
[10]
Chao Zhao, Kunal Patel, Lindsay Marie Aichinger, Zhaoqian Liu, Rundong Hu, Hong Chen, Xiaosi Li, Lingyan Li, Ge Zhang, Yung Chang, and Jie Zheng
RSC Advances, 2013, Volume 3, Number 43, Page 19991
[11]
Jiang Wu, Chao Zhao, Rundong Hu, Weifeng Lin, Qiuming Wang, Jun Zhao, Stephanie M. Bilinovich, Thomas C. Leeper, Lingyan Li, Harry M. Cheung, Shengfu Chen, and Jie Zheng
Acta Biomaterialia, 2014, Volume 10, Number 2, Page 751
[12]
Asta Makaraviciute and Almira Ramanaviciene
Biosensors and Bioelectronics, 2013, Volume 50, Page 460
[14]
Antoine Venault, Yung Chang, Hung-Hsing Hsu, Jheng-Fong Jhong, Hui-Shan Yang, Ta-Chin Wei, Kuo-Lun Tung, Akon Higuchi, and James Huang
Journal of Membrane Science, 2013, Volume 439, Page 48
[15]
Zdenka Kucekova, Vera Kasparkova, Petr Humpolicek, Petra Sevcikova, and Jaroslav Stejskal
Chemical Papers, 2013, Volume 67, Number 8
[16]
Chao Zhao, Jun Zhao, Xiaosi Li, Jiang Wu, Shenfu Chen, Qiang Chen, Qiuming Wang, Xiong Gong, Lingyan Li, and Jie Zheng
Biomaterials, 2013, Volume 34, Number 20, Page 4714
[17]
Liya Guo, Weiyong Yuan, Zhisong Lu, and Chang Ming Li
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, Volume 439, Page 69
[18]
Ceren Avci, Sonia Sheikh, Christophe Blaszykowski, and Michael Thompson
Chem. Commun., 2013, Volume 49, Number 5, Page 466
[19]
Jose Luis Yagüe, Anna Maria Coclite, Christy Petruczok, and Karen K. Gleason
Macromolecular Chemistry and Physics, 2013, Volume 214, Number 3, Page 302
[20]
Christophe Blaszykowski, Sonia Sheikh, and Michael Thompson
Chemical Society Reviews, 2012, Volume 41, Number 17, Page 5599
[21]
Chao Zhao, Qiang Chen, Kunal Patel, Lingyan Li, Xiaosi Li, Qiuming Wang, Ge Zhang, and Jie Zheng
Soft Matter, 2012, Volume 8, Number 30, Page 7848
[22]
Sarra Gam-Derouich, Aazdine Lamouri, Catherine Redeuilh, Philippe Decorse, François Maurel, Benjamin Carbonnier, Selim Beyazıt, Gorkem Yilmaz, Yusuf Yagci, and Mohamed M. Chehimi
Langmuir, 2012, Volume 28, Number 21, Page 8035

Comments (0)

Please log in or register to comment.
Log in