Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 66, Issue 8

Issues

Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts

Katarína Kráľová / František Šeršeň / Matúš Peško
  • Department of Ecosozology and Physiotactics, Faculty of Natural Sciences, Comenius University, SK-842 15, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Věra Klimešová
  • Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, CZ-501 65, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karel Waisser
  • Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, CZ-501 65, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-19 | DOI: https://doi.org/10.2478/s11696-012-0192-9

Abstract

Inhibition of photosynthetic electron transport (PET) in spinach chloroplasts by nineteen 2-benzylsulphanylbenzimidazoles (BZA) was studied. BZA were found to inhibit photosynthetic electron transport (PET) and for their inhibitory efficiency, electronic properties of the R substituent on the benzyl moiety are decisive. The PET inhibiting activity of the studied BZA expressed as IC50 varied in the range from 28.5 μM (R = 3,5-(CF3)2) to 394.5 μM (R = 2,4-(NO2)2). For compounds with R = H, 4-CH3, 3-CH3, 3-OCH3, 4-F, 3-F, 4-Cl, 3-Cl, 2-Cl, 4-Br, 3-Br, 3,4-F2, 3,4-Cl2, 3-CF3, 3,5-(CF3)2 linear increase of the inhibitory activity with the increasing value of the substituent’s σ constant up to 0.86 was observed. Further increase of the σ constant resulted in a sharp activity decrease of the corresponding compounds (R = 2-F-6-Cl, 2-NO2, 3,5-(NO2)2, 2,4-(NO2)2). Using EPR spectroscopy and an artificial electron donor diphenyl carbazide it was found that the site of BZA action in the photosynthetic apparatus is situated on the donor side of PS 2, prior to the Z·/D· intermediate.

Keywords: alkylsulfanyl; benzimidazole; EPR spectroscopy; photosynthetic electron transport; site of action

  • [1] Bocion, P. F., Cattanach, C. J., Eggenberg, P., Gressel, J., Hagmann, M. L., Malkin, S., & Wenger, J. (1987). Synthesis and characterization of a group of dihydropyrimidobenzimidazole photosystem II herbicides. Pesticide Biochemistry and Physiology, 28, 75–84. DOI: 10.1016/0048-3575(87)90115-5. http://dx.doi.org/10.1016/0048-3575(87)90115-5CrossrefGoogle Scholar

  • [2] Burton, D. E., Lambie, A. J., Ludgate, J. C. L., Newbold, G. T., Percival, A., & Saggers, D. T. (1965). 2-Trifluoromethylbenzimidazoles: a new class of herbicidal compounds. Nature, 208, 1166–1170. DOI: 10.1038/2081166a0. http://dx.doi.org/10.1038/2081166a0CrossrefGoogle Scholar

  • [3] Dane, F., & Dalgiç, Ö. (2005). The effects of fungicide benomyl (benlate) on growth and mitosis in onion (Allium cepa L.) root apical meristem. Acta Biologica Hungarica, 56, 119–128. DOI: 10.1556/ABiol.56.2005.1-2.12. http://dx.doi.org/10.1556/ABiol.56.2005.1-2.12CrossrefGoogle Scholar

  • [4] Garcia, P. C., Rivero, R. M., López-Lefebre, L. R., Sánchez, E., Ruiz, J. M., & Romero, L. (2001). Direct action of the biocide carbendazim on phenolic metabolism in tobacco plants. Journal of Agricultural and Food Chemistry, 49, 131–137. DOI: 10.1021/jf000850y. http://dx.doi.org/10.1021/jf000850yCrossrefGoogle Scholar

  • [5] Hoff, A. J. (1979). Application of ESR in photosynthesis. Physics Reports, 54, 75–200. DOI: 10.1016/0370-1573(79) 90016-4. http://dx.doi.org/10.1016/0370-1573(79)90016-4CrossrefGoogle Scholar

  • [6] Jampilek, J., Musiol, R., Finster, J., Pesko, M., Carroll, J., Kralova, K., Vejsova, M., O’Mahony, J., Coffey, A., Dohnal, J., & Polanski, J. (2009). Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules, 14, 4246–4265. DOI: 10.3390/molecules14104246. http://dx.doi.org/10.3390/molecules14104246Web of ScienceCrossrefGoogle Scholar

  • [7] Klimešová, V., Kočí, J., Pour, M., Stachel, J., Waisser, K., & Kaustová, J. (2002). Synthesis and preliminary evaluation of benzimidazole derivatives as antimicrobial agents. European Journal of Medicinal Chemistry, 37, 409–418. DOI: 10.1016/s0223-5234(02)01342-9. http://dx.doi.org/10.1016/S0223-5234(02)01342-9CrossrefGoogle Scholar

  • [8] Kráľová, K., Miletín, M., & Doležal, M. (2001). IInhibition of oxygen evolution rate in freshwater algae Chlorella vulgaris by some anilides of substituted pyridine-4-carboxylic acids. Chemical Papers, 55, 251–253. Google Scholar

  • [9] Kráľová, K., Šeršeň, F., Klimešová, V., & Waisser, K. (2011). 2-Alkylsulphanyl-4-pyridine-carbothioamides-inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris. Chemical Papers, 65, 909–912 DOI: 10.2478/s11696-011-0082-6. http://dx.doi.org/10.2478/s11696-011-0082-6Web of ScienceCrossrefGoogle Scholar

  • [10] Kráľová, K., Šeršeň, F., Miletín, M., & Doležal, M. (2002). Inhibition of photosynthetic electron transport in spinach chloroplasts by 2,6-disubstituted pyridine-4-thiocarboxamides. Chemical Papers, 56, 214–217. Google Scholar

  • [11] Kráľová, K., Šeršeň, F., Miletín, M., & Hartl, J. (1998). Inhibition of photosynthetic electron transport by some anilides of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts. Chemical Papers, 52, 52–55. Google Scholar

  • [12] Kráľová, K., Šeršeň, F., & Sidóová, E. (1992). Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chemical Papers, 46, 348–350. Google Scholar

  • [13] Kráľová, K., Šeršeň, F., & Sidóová, E. (1993). Effect of 2-alkylthio-6-aminobenzothiazoles and their 6-N-substituted derivatives on photosynthesis inhibition in spinach chloroplasts. General Physiology and Biophysics, 12, 421–427 Google Scholar

  • [14] Norrington, F. E., Hyde, R. M., Williams, S. G., & Wotton, R. (1975). Physiochemical-activity relations in practice. 1. Rational and self-consistent data bank. Journal of Medicinal Chemistry, 18, 604–607. DOI: 10.1021/jm00240a016. http://dx.doi.org/10.1021/jm00240a016CrossrefGoogle Scholar

  • [15] Roh, K. S., Oh, M. J., Song, S. D., Chung, H. S., & Song, J. S. (2001). Influence of benomyl on photosynthetic capacity in soybean leaves. Biotechnolology and Bioprocess Engineering, 6, 100–106. http://dx.doi.org/10.1007/BF02931954Google Scholar

  • [16] Stefańska, Z., Gralewska, R., Starościak, B. J., & Kazimierczuk, Z. (1999). Antimicrobial activity of substituted azoles and their nucleosides. Pharmazie, 54, 879–884 Google Scholar

  • [17] Svensson, B., Vass, I., & Styring, S. (1991). Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Zeitschrift für Naturforschung, 46, 765–776. Google Scholar

  • [18] van Iersel, M. W., & Bugbee, B. (1996). Phytotoxic effects of benzimidazole fungicides on bedding plants. Journal of the American Society for Horticultural Science, 121, 1095–1102. Google Scholar

  • [19] van Iersel, M. W., & Bugbee B. (1997). Dibutylurea reduces photosynthesis, growth and flowering of petunia and impatiens. Journal of the American Society for Horticultural Science, 122, 536–541. Google Scholar

About the article

Published Online: 2012-06-19

Published in Print: 2012-08-01


Citation Information: Chemical Papers, Volume 66, Issue 8, Pages 795–799, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0192-9.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in