Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 66, Issue 8


Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation

Pookot Kumar
  • FMC (I) R&D Centre, Society for Innovation and Development, Indian Institute of Science Campus, 560012, Bangalore, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kuriya Lokanatha Rai
Published Online: 2012-06-19 | DOI: https://doi.org/10.2478/s11696-012-0195-6


A mild, environmentally friendly method for reduction of aromatic nitro group to amine is reported, using zinc powder in aqueous solutions of chelating ethers. The donor ether acts as a ligand and also serves as a co-solvent. Water is the proton source. This procedure is also a new method for the activation of zinc for electron transfer reduction of aromatic nitro compounds. The reduction is accomplished in a neutral medium and other reducing groups remained unaffected. The ethers used are dioxolane, 1,4-dioxane, ethoxymethoxyethane, dimethoxymethane, 1,2-dimethoxyethane, and diglyme.

Keywords: reduction; dioxolane; chelating ether; aqueous medium; zinc

  • [1] Abiraj, K., Srinivasa, G., & Gowda, D. C. (2005). Palladiumcatalyzed simple and efficient hydrogenative cleavage of azo compounds using recyclable polymer-supported formate. Canadian Journal of Chemistry, 83, 517–520. DOI:10.1139/v05-071. http://dx.doi.org/10.1139/v05-071CrossrefGoogle Scholar

  • [2] Ashley, J. N., Berg, S. S., & MacDonald, R. D. (1960). The search for chemotherapeutic amidines. Part XVI. Amidinoanilino-1,3,5-triazines and related compounds. Journal of the Chemical Society, 1960, 4525–4532. DOI: 10.1039/jr9600004525. CrossrefGoogle Scholar

  • [3] Bellamy, F. D., & Ou, K. (1984). Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium. Tetrahedron Letters, 25, 839–842. DOI:10.1016/s0040-4039(01)80041-1. http://dx.doi.org/10.1016/S0040-4039(01)80041-1CrossrefGoogle Scholar

  • [4] Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r. http://dx.doi.org/10.1021/cr010338rCrossrefGoogle Scholar

  • [5] Dyson, P. J., Ellis, D. J., Welton, T., & Parker, D. G. (1999). Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chemical Communications, 1999, 25–26. DOI: 10.1039/a807447j. http://dx.doi.org/10.1039/a807447jCrossrefGoogle Scholar

  • [6] Gowda, D., Mahesh, B., & Shankare, G. (2001). Zinc-catalyzed ammonium-formate reductions: Reduction of nitro compounds. Indian Journal of Chemistry Section B, 40, 75–77. Google Scholar

  • [7] Harmon, R. E., Gupta, S. K., & Brown, D. J. (1973). Hydrogenation of organic compounds using homogeneous catalysts. Chemical Reviews, 73, 21–52. DOI: 10.1021/cr60281a003. http://dx.doi.org/10.1021/cr60281a003CrossrefGoogle Scholar

  • [8] Hazlet, S. E., & Dornfeld, C. A. (1944). The reduction of aromatic nitro compounds with activated iron. Journal of the American Chemical Society, 66, 1781–1782. DOI:10.1021/ja01238a049. http://dx.doi.org/10.1021/ja01238a049CrossrefGoogle Scholar

  • [9] Ho, T. L., & Wang, C. M. (1974). Reduction of aromatic nitro compounds by titanium(III) chloride. Synthesis, 1974, 45. DOI: 10.1055/s-1974-23246. http://dx.doi.org/10.1055/s-1974-23246CrossrefGoogle Scholar

  • [10] Johnstone, R. A. W., Willby, A. H., & Entwistle, I. D. (1985). Heterogeneous catalytic transfer hydrogenation and its relation to other methods of reduction of organic compounds. Chemical Reviews, 85, 129–170. DOI: 10.1021/cr00066a003. http://dx.doi.org/10.1021/cr00066a003CrossrefGoogle Scholar

  • [11] Khan, F. A., Dash, J., Sudheer, C., & Gupta, R. K. (2003). Chemoselective reduction of aromatic nitro and azo compounds in ionic liquids using zinc and ammonium salts. Tetrahedron Letters, 44, 7783–7787. DOI: 10.1016/j.tetlet.2003.08.080. http://dx.doi.org/10.1016/j.tetlet.2003.08.080CrossrefGoogle Scholar

  • [12] Kijima, M., Nambu, Y., Endo, T., & Okawara, M. (1984). Selective reduction of monosubstituted nitrobenzenes to anilines by dihydrolipoamide-iron(II). Journal of Organic Chemistry, 49, 1434–1436. DOI: 10.1021/jo00182a023. http://dx.doi.org/10.1021/jo00182a023CrossrefGoogle Scholar

  • [13] Liu, Y., Lu, Y., Prashad, M., Repic, O., & Blacklock, T. J. (2005). A practical and chemoselective reduction of nitroarenes to anilines using activated iron. Advanced Synthesis and Catalysis, 347, 217–219. DOI: 10.1002/adsc.200404236. http://dx.doi.org/10.1002/adsc.200404236CrossrefGoogle Scholar

  • [14] Lyle, R. E., & Lamittina, J. L. (1974). Selective hydrogenation of 2,6-dinitroanilines. Synthesis, 1974, 726–727. http://dx.doi.org/10.1055/s-1974-23423Google Scholar

  • [15] O’Neil, M. J. (2006a). Merck Index (pp. 659). Whitehouse Station, NY, USA: Merck Research Laboratories. Google Scholar

  • [16] O’Neil, M. J. (2006b). Merck Index (pp. 462). Whitehouse Station, NY, USA: Merck Research Laboratories. Google Scholar

  • [17] O’Neil, M. J. (2006c). Merck Index (pp. 7284). Whitehouse Station, NY, USA: Merck Research Laboratories. Google Scholar

  • [18] O’Neil, M. J. (2006d). Merck Index (pp. 2118). Whitehouse Station, NY, USA: Merck Research Laboratories. Google Scholar

  • [19] O’Neil, M. J. (2006e). Merck Index (pp. 9536). Whitehouse Station, NY, USA: Merck Research Laboratories. Google Scholar

  • [20] O’Neil, M. J. (2006f). Merck Index (pp. 6398). Whitehouse Station, NY, USA: Merck Research Laboratories. Google Scholar

  • [21] Onopchenko, A., Sabourin, E. T., & Selwitz, C. M. (1979). Selective catalytic hydrogenation of aromatic nitro groups in the presence of acetylenes. Synthesis of (3-aminophenyl) acetylene via hydrogenation of (3-nitrophenyl)acetylene over cobalt polysulfide and ruthenium sulfide catalysts. Journal of Organic Chemistry, 44, 3671–3674. DOI: 10.1021/jo01335a011. http://dx.doi.org/10.1021/jo01335a011CrossrefGoogle Scholar

  • [22] Popp, F. D., & Schultz, H. P. (1962). Electrolytic reduction of organic compounds. Chemical Reviews, 62, 19–40. DOI:10.1021/cr60215a002. http://dx.doi.org/10.1021/cr60215a002CrossrefGoogle Scholar

  • [23] Ram, S., & Ehernkaufer, R. E. (1984). A general procedure for mild and rapid reduction of aliphatic and aromatic nitro compounds using ammonium formate as a catalytic hydrogen transfer agent. Tetrahedron Letters, 25, 3415–3418. DOI:10.1016/s0040-4039(01)91034-2. http://dx.doi.org/10.1016/S0040-4039(01)91034-2CrossrefGoogle Scholar

  • [24] Rinderknecht, H., Koechlin, H., & Niemann, C. (1953). Oxindolylalanine. Journal of Organic Chemistry, 18, 971–982. DOI: 10.1021/jo50014a011. http://dx.doi.org/10.1021/jo50014a011CrossrefGoogle Scholar

  • [25] Sarmah, P., & Dutta, D. K. (2003). Manganese mediated aqueous reduction of aromatic nitro compounds to amines. Journal of Chemical Research, 2003, 236–237. DOI: 10.3184/030823403103173624. http://dx.doi.org/10.3184/030823403103173624CrossrefGoogle Scholar

  • [26] Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 2001, 2399–2407. DOI: 10.1039/b107270f. http://dx.doi.org/10.1039/b107270fCrossrefGoogle Scholar

  • [27] Simpson, J. C. E., Atkinson, C. M., Schofield, K., & Stephenson, O. (1945). o-Amino-ketones of the acetophenone and benzophenone types. Journal of the Chemical Society, 1945, 646–657. DOI: 10.1039/jr9450000646. CrossrefGoogle Scholar

  • [28] Staiger, R. P., & Miller, E. B. (1959). Isatoic anhydride. IV. Reactions with various nucleophiles. Journal of Organic Chemistry, 24, 1214–1219. DOI: 10.1021/jo01091a013. http://dx.doi.org/10.1021/jo01091a013CrossrefGoogle Scholar

  • [29] Steines, S., Wasserscheid, P., & Drießen-Hölscher, B. (2000). An ionic liquid as catalyst medium for stereoselective hydrogenations of sorbic acid with ruthenium complexes. Journal für Praktische Chemie, 342, 348–354. DOI: 10.1002/(SICI)1521-3897(200004)342:4<348::AID-PRAC348>3.0.CO;2-6. http://dx.doi.org/10.1002/(SICI)1521-3897(200004)342:4<348::AID-PRAC348>3.0.CO;2-6CrossrefGoogle Scholar

  • [30] Tsukinoki, T., & Tsuzuki, H. (2001). Organic reaction in water. Part 5. Novel synthesis of anilines by zinc metal-mediated chemoselective reduction of nitroarenes. Green Chemistry, 3, 37–38. DOI: 10.1039/b008219h. http://dx.doi.org/10.1039/b008219hCrossrefGoogle Scholar

  • [31] Ung, S., Falgui`eres, A., Guy, A., & Ferroud, C. (2005). Ultrasonically activated reduction of substituted nitrobenzenes to corresponding N-arylhydroxylamines. Tetrahedron Letters, 46, 5913–5917. DOI: 10.1016/j.tetlet.2005.06.126. http://dx.doi.org/10.1016/j.tetlet.2005.06.126CrossrefGoogle Scholar

  • [32] Vogel, A. I., Furniss, B. S., Hannaford, A. J., Smith, P.W.G., & Tatchel, A. R. (1989). Vogel’s text book of practical organic chemistry (5th ed.). Harlow, UK: Longman. Google Scholar

  • [33] Wasserscheid, P., & Keim, W. (2000). Ionic liquids-new “solutions” for transition metal catalysis. Angewandte Chemie International Edition, 39, 3772–3789. DOI: 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5. http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5CrossrefGoogle Scholar

  • [34] Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI: 10.1021/cr980032t. CrossrefWeb of ScienceGoogle Scholar

  • [35] Yuste, F., Saldaña, M., & Walls, F. (1982). Selective reduction of aromatic nitro compounds containing o- and n-benzyl groups with hydrazine and Raney nickel. Tetrahedron Letters, 23, 147–148. DOI: 10.1016/s0040-4039(00)86770-2. http://dx.doi.org/10.1016/S0040-4039(00)86770-2CrossrefGoogle Scholar

About the article

Published Online: 2012-06-19

Published in Print: 2012-08-01

Citation Information: Chemical Papers, Volume 66, Issue 8, Pages 772–778, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0195-6.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in