Jump to ContentJump to Main Navigation
Show Summary Details

Chemical Papers


IMPACT FACTOR 2015: 1.326

SCImago Journal Rank (SJR) 2015: 0.382
Source Normalized Impact per Paper (SNIP) 2015: 0.560
Impact per Publication (IPP) 2015: 1.279

Online
ISSN
1336-9075
See all formats and pricing
Volume 67, Issue 10 (Oct 2013)

Issues

Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode

Leonard Tijing
  • Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Department of Mechanical Engineering, College of Engineering and Design, Silliman University, Hibbard Avenue, Dumaguete City, Negros Oriental, 6200, Republic of the Philippines
  • Email:
/ Michael Ruelo
  • Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Email:
/ Chan-Hee Park
  • Department of Bionanosystem Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Email:
/ Altangerel Amarjargal
  • Department of Bionanosystem Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Power Engineering School, Mongolian University of Science and Technology, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar, 210-646, Mongolia
  • Email:
/ Han Kim
  • Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Email:
/ Hem Pant
  • Department of Bionanosystem Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Department of Engineering Science and Humanities, Institute of Engineering, Tribhuvan University, Pulchowk Campus, 1175, Kathmandu, Nepal
  • Email:
/ Dong-Hwan Lee
  • Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Email:
/ Cheol Kim
  • Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Department of Bionanosystem Engineering, Chonbuk National University, 567 Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea
  • Email:
Published Online: 2013-06-04 | DOI: https://doi.org/10.2478/s11696-013-0387-8

Abstract

Laboratory corrosion immersion tests were carried out to investigate the effectiveness of a physical water treatment (PWT) using zinc and ceramic tourmaline-based catalytic materials for the control of carbon steel corrosion in acidic still water (i.e., pH 4.5–5). The tests were carried out at different water temperatures over 168 h. Our results showed a maximum of 22 % reduction in the corrosion rate using PWT in comparison with the control case. Furthermore, the corrosion products depicted more agglomerated particles after the PWT treatment. In both cases, differences were observed in the crystal structures, showing in general lower corrosion activity when PWT was used. The present results could find potential applications in water distribution systems and where metallic materials are exposed to stagnant acidic water.

Keywords: corrosion; physical water treatment; catalytic materials; tourmaline; zinc

  • [1] Ali, M. R., Mustafa, C. M., & Habib, M. (2009). Effect of molybdate, nitrite and zinc ions on the corrosion inhibition of mild steel in aqueous chloride media containing cupric ions. Journal of Scientific Research, 1, 82–91. DOI: 10.3329/jsr.v1i1.1053. [Crossref]

  • [2] Amarjargal, A., Tijing, L. D., Ruelo, M. T. G., Park, C. H., Pant, H. R., Vista, F. P., Lee, D. H., & Kim, C. S. (2013). Inactivation of bacteria in batch suspension by fluidized ceramic tourmaline nanoparticles under oscillating radio frequency electric fields. Ceramics International, 39, 2141–2145. DOI: 10.1016/j.ceramint.2012.07.070. http://dx.doi.org/10.1016/j.ceramint.2012.07.070 [Crossref] [Web of Science]

  • [3] Amin, M. A., & Khaled, K. F. (2010). Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series — Part I. Tafel polarisation, ICP-AES and EFM studies. Corrosion Science, 52, 1762–1770. DOI: 10.1016/j.corsci.2009.12.033. http://dx.doi.org/10.1016/j.corsci.2009.12.033 [Crossref]

  • [4] Amin, M. A., Ahmed, M. A., Arida, H. A., Kandemirli, F., Saracoglu, M., Arslan, T., & Basaran, M. A. (2011). Monitoring corrosion and corrosion control of iron in HCl by nonionic surfactants of the TRITON-X series — Part III. Immersion time effects and theoretical studies. Corrosion Science, 53, 1895–1909. DOI: 10.1016/j.corsci.2011.02.007. http://dx.doi.org/10.1016/j.corsci.2011.02.007 [Crossref]

  • [5] ASTM G1-03 (2011). Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken, PA, USA: American Society for Testing and Materials. DOI: 10.1520/g0001-03r11. [Crossref]

  • [6] Biomorgi, J., Hernández, S., Marín, J., Rodriguez, E., Lara, M., & Viloria, A. (2012). Internal corrosion studies in hydrocarbons production pipelines located at Venezuelan Northeastern. Chemical Engineering Research and Design, 90, 1159–1167 DOI: 10.1016/j.cherd.2011.12.013. http://dx.doi.org/10.1016/j.cherd.2011.12.013 [Crossref]

  • [7] Chaves, I. A., & Melchers, R. E. (2011). Pitting corrosion in pipeline steel weld zones. Corrosion Science, 53, 4026–4032. DOI: 10.1016/j.corsci.2011.08.005. http://dx.doi.org/10.1016/j.corsci.2011.08.005 [Crossref]

  • [8] Hassan, H. H. (2007). Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part II: Time and temperature effects and thermodynamic treatments. Electrochimica Acta, 53, 1722–1730. DOI: 10.1016/j.electacta.2007.08.021. http://dx.doi.org/10.1016/j.electacta.2007.08.021 [Web of Science] [Crossref]

  • [9] Javaherdashti, R. (2000). How corrosion affects industry and life. Anti-Corrosion Methods and Materials, 47, 30–34. DOI: 10.1108/00035590010310003. http://dx.doi.org/10.1108/00035590010310003 [Crossref]

  • [10] Liang, J. S., Meng, J. P., Liang, G. C., Feng, Y. W., & Ding, Y. (2006). Preparation and photocatalytic activity of composite films containing clustered TiO2 particles and mineral tourmaline powders. Transactions of Nonferrous Metals Society of China, 16, s542–s546. DOI: 10.1016/s1003-6326(06)60253-7. http://dx.doi.org/10.1016/S1003-6326(06)60253-7 [Crossref]

  • [11] Melidis, P., Sanozidou, M., Mandusa, A., & Ouzounis, K. (2007). Corrosion control by using indirect methods. Desalination, 213, 152–158. DOI: 10.1016/j.desal.2006.03.606. http://dx.doi.org/10.1016/j.desal.2006.03.606 [Web of Science] [Crossref]

  • [12] Mohebbi, H., & Li, C. Q. (2011). Experimental investigation on corrosion of cast iron pipes. International Journal of Corrosion, 2011, 506501. DOI: 10.1155/2011/506501. http://dx.doi.org/10.1155/2011/506501 [Crossref]

  • [13] Neville, A., & Wang, C. (2009). Erosion-corrosion mitigation by corrosion inhibitors. An assessment of mechanisms. Wear, 267, 195–203. DOI: 10.1016/j.wear.2009.01.038. [Crossref] [Web of Science]

  • [14] Patel, N. S., Jauhari, S., & Mehta, G. N. (2010). 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl. Chemical Papers, 64, 51–55. DOI: 10.2478/s11696-009-0096-5. [Crossref] [Web of Science]

  • [15] Popova, A. (2007). Temperature effect on mild steel corrosion in acid media in presence of azoles. Corrosion Science, 49, 2144–2158. DOI: 10.1016/j.corsci.2006.10.020. http://dx.doi.org/10.1016/j.corsci.2006.10.020 [Crossref]

  • [16] Raja, P. B., & Sethuraman, M. G. (2008). Natural products as corrosion inhibitor for metals in corrosive media — A review. Materials Letters, 62, 113–116. DOI: 10.1016/j.matlet.2007.04.079. http://dx.doi.org/10.1016/j.matlet.2007.04.079 [Crossref] [Web of Science]

  • [17] Salasi, M., Shahrabi, T., Roayaei, E., & Aliofkhazraei, M. (2007). The electrochemical behaviour of environment-friendly inhibitors of silicate and phosphonate in corrosion control of carbon steel in soft water media. Materials Chemistry and Physics, 104, 183–190. DOI: 10.1016/j.matchemphys.2007.03.008. http://dx.doi.org/10.1016/j.matchemphys.2007.03.008 [Web of Science] [Crossref]

  • [18] Sarin, P., Snoeyink, V. L., Bebee, J., Kriven, W. M., & Clement, J. A. (2001). Physico-chemical characteristics of corrosion scales in old iron pipes. Water Research, 35, 2961–2969. DOI: 10.1016/s0043-1354(00)00591-1. http://dx.doi.org/10.1016/S0043-1354(00)00591-1 [Crossref]

  • [19] Somerscales, E. F. C. (1997). Fundamentals of corrosion fouling. Experimental Thermal and Fluid Science, 14, 335–355. DOI: 10.1016/s0894-1777(96)00136-7. http://dx.doi.org/10.1016/S0894-1777(96)00136-7 [Crossref]

  • [20] Świetlik, J., Raczyk-Stanisławiak, U., Piszora, P., & Nawrocki, J. (2012). Corrosion in drinking water pipes: The importance of green rusts. Water Research, 46, 1–10. DOI: 10.1016/j.watres.2011.10.006. http://dx.doi.org/10.1016/j.watres.2011.10.006 [Crossref]

  • [21] Tao, D., Chen, G. L., & Parekh, B. K. (2005). Corrosion protection of mild carbon steel media in phosphate grinding mill using impressed current technology. Minerals Engineering, 18, 481–488. DOI: 10.1016/j.mineng.2004.08.003. http://dx.doi.org/10.1016/j.mineng.2004.08.003 [Crossref]

  • [22] Thornhill, R. S. (1945). Zinc, manganese, and chromic salts as corrosion inhibitors. Industrial & Engineering Chemistry, 37, 706–708. DOI: 10.1021/ie50428a011. http://dx.doi.org/10.1021/ie50428a011 [Crossref]

  • [23] Tijing, L. D., Kim, H. Y., Lee, D. H., Kim, C. S., & Cho, Y. I. (2010). Physical water treatment using RF electric fields for the mitigation of CaCO3 fouling in cooling water. International Journal of Heat and Mass Transfer, 53, 1426–1437. DOI: 10.1016/j.ijheatmasstransfer.2009.12.009. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.009

  • [24] Tijing, L. D., Lee, D. H., Kim, D. W., Cho, Y. I., & Kim, C. S. (2011a). Effect of high-frequency electric fields on calcium carbonate scaling. Desalination, 279, 47–53. DOI: 10.1016/j.desal.2011.05.072. http://dx.doi.org/10.1016/j.desal.2011.05.072 [Crossref] [Web of Science]

  • [25] Tijing, L. D., Yu, M. H., Kim, C.H., Amarjargal, A., Lee, Y. C., Lee, D. H., Kim, D. W., & Kim, S. C. (2011b). Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline. Applied Thermal Engineering, 31, 2025–2031. DOI: 10.1016/j.applthermaleng.2011.03.011. http://dx.doi.org/10.1016/j.applthermaleng.2011.03.011 [Crossref] [Web of Science]

  • [26] Wu, K. H., Zhu, L. Q., Li, W. P., & Liu, H. C. (2010). Effect of Ca2+ and Mg2+ on corrosion and scaling of galvanized steel pipe in simulated geothermal water. Corrosion Science, 52, 2244–2249. DOI: 10.1016/j.corsci.2010.03.023. http://dx.doi.org/10.1016/j.corsci.2010.03.023 [Crossref]

  • [27] Xia, M. S., Hu, C. H., & Zhang, H. M. (2006). Effects of tourmaline addition on the dehydrogenase activity of Rhodopseudomonas palustris. Process Biochemistry, 41, 221–225. DOI: 10.1016/j.procbio.2005.05.012. http://dx.doi.org/10.1016/j.procbio.2005.05.012 [Crossref]

  • [28] Yu, L. S., Liang, L., Liu, S. W., Lv, Y. Y., Lin, J. Z., & Li, H. Q. (2011). Cathodal polarization plus weighing to quickly evaluate scale inhibitors. Chemical Engineering Research and Design, 89, 1056–1060. DOI: 10.1016/j.cherd.2010.12.007. http://dx.doi.org/10.1016/j.cherd.2010.12.007 [Crossref] [Web of Science]

  • [29] Zhang, Z., Stout, J. E., Yu, V. L., & Vidic, R. (2008). Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems. Water Research, 42, 129–136. DOI: 10.1016/j.watres.2007.07.054. http://dx.doi.org/10.1016/j.watres.2007.07.054 [Crossref] [Web of Science]

About the article

Published Online: 2013-06-04

Published in Print: 2013-10-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0387-8. Export Citation

Comments (0)

Please log in or register to comment.
Log in