Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 67, Issue 11

Issues

Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles

Juraj Kronek
  • Polymer Institute, Slovak Academy of Sciences, Centre of Excellence-GLYCOMED, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Nedelčev
  • Polymer Institute, Slovak Academy of Sciences, Centre of Excellence-GLYCOMED, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcel Mikulec
  • Polymer Institute, Slovak Academy of Sciences, Centre of Excellence-GLYCOMED, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Angela Kleinová
  • Polymer Institute, Slovak Academy of Sciences, Centre of Excellence-GLYCOMED, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Lustoň
  • Polymer Institute, Slovak Academy of Sciences, Centre of Excellence-GLYCOMED, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-28 | DOI: https://doi.org/10.2478/s11696-013-0405-x

Abstract

A range of cinnamic units containing 4,5-dihydrooxazoles was prepared using two different synthetic routes. The first method was based on the transformation of substituted cinnamic or benzoic acids to 2-styryl-4,5-dihydrooxazoles. Several derivatives containing phenolic groups were prepared in this manner. The second approach consisted of a reaction between the 4,5-dihydrooxazole moiety and double bond-containing compounds. These compounds contain two or more reactive centres capable of providing polymerisations and also organic reactions.

Keywords: cinnamic acid derivatives; 4,5-dihydrooxazole; conjugated unsaturated bond; 2-oxazolines

  • [1] Bertmer, M., Nieuwendaal, R. C., Barnes, A. B., & Hayes, S. E. (2006). Solid-state photodimerization kinetics of α-trans-cinnamic acid to α-truxillic acid studied via solid-state NMR. Journal of Physical Chemistry B, 110, 6270–6273. DOI: 10.1021/jp057417h. http://dx.doi.org/10.1021/jp057417hCrossrefWeb of ScienceGoogle Scholar

  • [2] Beutler, A., Davies, C. D., Elliott, M. C., Galea, N.M., Long, M. S., Willock, D. J., & Wood, J. L. (2005). Diastereoselective dimerisation of alkenylthiazolines: A combined synthetic and computational study. European Journal of Organic Chemistry, 2005, 3791–3800. DOI:10.1002/ejoc.200500360. http://dx.doi.org/10.1002/ejoc.200500360CrossrefGoogle Scholar

  • [3] Cohen, M. D., Schmidt, G. M. J., & Sonntag, F. I. (1964). Topochemistry. Part II. The photochemistry of trans-cinnamic acids. Journal of the Chemical Society (Resumed), 1964, 2000–2013. DOI:10.1039/jr9640002000. http://dx.doi.org/10.1039/jr9640002000CrossrefGoogle Scholar

  • [4] Creed, D., Hoyle, C. E., Jin, L., Peeler, A. M., Subramanian, P., & Krishnan, V. (2001). Triplet-sensitized irradiation of a main-chain liquid crystalline poly(aryl cinnamate) in three different phases. Journal of Polymer Science, Part. A: Polymer Chemistry, 39, 134–144. DOI: 10.1002/1099-0518(20010101)39:1〈134::aid-pola150〉3.0.CO;2-y. http://dx.doi.org/10.1002/1099-0518(20010101)39:1<134::AID-POLA150>3.0.CO;2-YCrossrefGoogle Scholar

  • [5] de Benneville, P. L., & Luskin, L. S. (1958). U.S. Patent No. 2831858. Washington, D.C., USA: U.S. Patent and Trademark Office. Google Scholar

  • [6] Frump, J. A. (1971). Oxazolines. Their preparation, reactions, and applications. Chemical Reviews, 71, 483–505. DOI: 10.1021/cr60273a003. http://dx.doi.org/10.1021/cr60273a003CrossrefGoogle Scholar

  • [7] Kagiya, T., & Matsuda, T. (1972). Selective polymerization of 2-isopropenyl-2-oxazoline and cross linking reaction of the polymers. Polymer Journal, 3, 307–314. http://dx.doi.org/10.1295/polymj.3.307Google Scholar

  • [8] Kaupp, G. (1995). [2+2] Cyclobutane synthesis (Liquid phase). In W. M. Horspool, & P. S. Song (Eds.), Organic photochemistry and photobiology (pp. 29–49). New York, NY, USA: CRC Press. Google Scholar

  • [9] König, B., Leue, S., Horn, C., Caudan, A., Desvergne, J. P., & Bouas-Laurent, H. (1996). Synthesis of medium size macrocycles by cinnamate [2+2] photoaddition. Liebigs Annalen, 1996, 1231–1233. DOI: 10.1002/jlac.199619960802. http://dx.doi.org/10.1002/jlac.199619960802CrossrefGoogle Scholar

  • [10] Kronek, J., Lustoň, J., & Böhme, F. (1998a). Reakcie 2-oxazolínov a ich využitie. Chemické Listy, 92, 475–485. (in Slovak) Google Scholar

  • [11] Kronek, J., Lustoň, J., & Böhme, F. (1998b). Syntéza 2-oxazolínov ako účinných činidiel v organickej syntéze a monomérov pre makromolekulovú chémiu. Chemické Listy, 92, 175–185. (in Slovak) Google Scholar

  • [12] Kronek, J., Lustoň, & J., Böhme, J. (2002). New materials with high π conjugation by reaction of 2-oxazoline containing phenols with polyamidines and inorganic base. Macromolecular Symposia, 187, 427–436. DOI: 10.1002/1521-3900(200209)187:1〈427::aid-masy427〉3.0.CO;2-9. http://dx.doi.org/10.1002/1521-3900(200209)187:1<427::AID-MASY427>3.0.CO;2-9CrossrefGoogle Scholar

  • [13] Kwasniewski., S. P., François, J. P., & Deleuze, M. S. (2001). Temperature effects on the UV-Vis electronic spectrum of trans-stilbene. International Journal of Quantum Chemistry, 85, 557–568. DOI: 10.1002/qua.10016. http://dx.doi.org/10.1002/qua.10016CrossrefGoogle Scholar

  • [14] Langer, V., Koóš, M., Gyepesová, D., Sládkovičová, M., Lustoň, J., & Kronek, J. (2005). Three isomeric forms of hydroxyphenyl-2-oxazoline: 2-(2-hydroxyphenyl)-2-oxazoline, 2-(3-hydroxyphenyl)-2-oxazoline and 2-(4-hydroxyphenyl)-2-oxazoline. Acta Crystallographica Section C, 61, o602–o606. DOI: 10.1107/s0108270105027812. CrossrefGoogle Scholar

  • [15] Lustoň, J., Kronek, J., Böhme, J., & Komber, H. (1999a). Synthesis of bis-2-oxazolines containing inner unsaturation and their hydrolysis to phenylenediacrylic acids. Designed Monomers and Polymers, 2, 61–68. DOI: 10.1163/156855599 x00296. http://dx.doi.org/10.1163/156855599X00296CrossrefGoogle Scholar

  • [16] Luston, J., Böhme, J., & Komber, H. (1999b). Synthesis of 2-oxazolines containing allyl groups by phase transfer catalysis. Designed Monomers and Polymers, 2, 325–331, DOI: 10.1163/156855599x00124. http://dx.doi.org/10.1163/156855599X00124CrossrefGoogle Scholar

  • [17] Luston, J., Kronek, J., Böhme, F., & Komber, H. (2001). Michael addition in the preparation of unsaturated 2-oxazolines. In Proceedings of 53rd Meeting of Chemical Societies, September 3–6, 2001. Banská Bystrica, Slovakia: Slovak Chemical Society. Google Scholar

  • [18] Lustoň, J., Kronek, J., & Böhme, F. (2006). Synthesis and polymerization reactions of cyclic imino ethers. 1. Ring-opening homopolyaddition of AB type hydroxyphenyl substituted 2-oxazolines. Journal of Polymer Science, Part A: Polymer Chemistry, 44, 343–355. DOI: 10.1002/pola.21159. http://dx.doi.org/10.1002/pola.21159CrossrefGoogle Scholar

  • [19] Nagarathinam, M., & Vittal, J. J. (2006). A rational approach to crosslinking of coordination polymers using the photochemical [2+2] cycloaddition reaction. Macromolecular Rapid Communications, 27, 1091–1099. DOI: 10.1002/marc.200600246. http://dx.doi.org/10.1002/marc.200600246CrossrefGoogle Scholar

  • [20] Nagarathinam, M., Peedikakkal, A. M. P., & Vittal, J. J. (2008). Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. Chemical Communications, 2008, 5277–5288. DOI: 10.1039/b809136f. http://dx.doi.org/10.1039/b809136fWeb of ScienceCrossrefGoogle Scholar

  • [21] Papper, V., & Likhtenshtein, G. I. (2001). Substituted stilbenes: a new view on well-known systems: New applications in chemistry and biophysics. Journal of Photochemistry and Photobiology A: Chemistry, 140, 39–52. DOI: 10.1016/s1010-6030(00)00428-7. http://dx.doi.org/10.1016/S1010-6030(00)00428-7CrossrefGoogle Scholar

  • [22] Pinther, P., Hartmann, M., Wermann, K., Gümther, W., & Ritter, H. (1992). Photoreactive polyanhydrides with cinnamic acid units in the main chain. Macromolecular Chemistry and Physics, 193, 2669–2675. DOI:10.1002/macp.1992.021931015. http://dx.doi.org/10.1002/macp.1992.021931015CrossrefGoogle Scholar

  • [23] Rabek, J. F. (1987). Mechanisms of photophysical processes and photochemical reactions in polymers: Theory and applications. New York, NY, USA: Wiley. Google Scholar

  • [24] Saltiel, J., & Sun, Y. P. (1989). Intrinsic potential energy barrier for twisting in the trans-stilbene S1 state in hydrocarbon solvents. Journal of Physical Chemistry, 93, 6246–6250. DOI: 10.1021/j100353a055. http://dx.doi.org/10.1021/j100353a055Google Scholar

  • [25] Saltiel, J., Sears, D. F., Ko, D. H., & Park, K. M. (1995). Cistrans isomerization of alkenes. In W. M. Horspool, & P. S. Song (Eds.) Organic photochemistry and photobiology (pp. 3). New York, NY, USA: CRC Press. Google Scholar

  • [26] Suginome, H. (1995). E,Z-Isomerization of imines, oximes and azo-compounds. In W. M. Horspool, & P. S. Song (Eds.), Organic photochemistry and photobiology (pp. 824). New York, NY, USA: CRC Press. Google Scholar

  • [27] Szczubialka, K., Hashimoto, H., & Morishima, Y. (1999). Photoresponsive hydrophobically modified polyelectrolytes containing cinnamic chromophores. Abstracts of Papers of the American Chemical Society, 218, U481–U482. Google Scholar

  • [28] Tomalia, D. A., Thill, B. P., & Fazio, M. J. (1980). Ionic oligomerization and polymerization of 2-alkenyl-2-oxazolines. Polymer Journal, 12, 661–675. http://dx.doi.org/10.1295/polymj.12.661Google Scholar

  • [29] Wehrmeister, H. L. (1962). Condensations of aromatic aldehydes with oxazolines and a new synthesis of cinnamic acids. Journal of Organic Chemistry, 27, 4418–4420. DOI: 10.1021/jo01059a070. http://dx.doi.org/10.1021/jo01059a070CrossrefGoogle Scholar

  • [30] Wu, S., Ma, H., & Lei, Z. (2010). AlCl3-catalyzed oxidation of alcohol. Tetrahedron, 66, 8641–8647. DOI:10.1016/j.tet.2010. 09.035. http://dx.doi.org/10.1016/j.tet.2010.09.035CrossrefGoogle Scholar

  • [31] Xu, Q., & Li, Z. (2009). A facile synthesis of 2-oxazolines using a PPh3-DDQ system. Tetrahedron Letters, 50, 6838–6840. DOI:10.1016/j.tetlet.2009.09.127. http://dx.doi.org/10.1016/j.tetlet.2009.09.127CrossrefGoogle Scholar

About the article

Published Online: 2013-06-28

Published in Print: 2013-11-01


Citation Information: Chemical Papers, Volume 67, Issue 11, Pages 1424–1432, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0405-x.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in