Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 67, Issue 2

Issues

Calorimetric determination of the effect of additives on cement hydration process

Pavel Šiler
  • Centrum for Materials Research, Project ERDF CZ.1.05/2.1.00/01.0012, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 621 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josef Krátký
  • Centrum for Materials Research, Project ERDF CZ.1.05/2.1.00/01.0012, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 621 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iva Kolářová
  • Centrum for Materials Research, Project ERDF CZ.1.05/2.1.00/01.0012, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 621 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaromír Havlica
  • Centrum for Materials Research, Project ERDF CZ.1.05/2.1.00/01.0012, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 621 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiří Brandštetr
  • Centrum for Materials Research, Project ERDF CZ.1.05/2.1.00/01.0012, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 621 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-30 | DOI: https://doi.org/10.2478/s11696-012-0256-x

Abstract

Possibilities of a multicell isoperibolic-semiadiabatic calorimeter application for the measurement of hydration heat and maximum temperature reached in mixtures of various compositions during their setting and early stages of hardening are presented. Measurements were aimed to determine the impact of selected components’ content on the course of ordinary Portland cement (OPC) hydration. The following components were selected for the determination of the hydration behaviour in mixtures: very finely ground granulated blast furnace slag (GBFS), silica fume (microsilica, SF), finely ground quartz sand (FGQ), and calcined bauxite (CB). A commercial polycarboxylate type superplasticizer was also added to the selected mixtures. All maximum temperatures measured for selected mineral components were lower than that reached for cement. The maximum temperature increased with the decreasing amount of components in the mixture for all components except for silica fume. For all components, except for CB, the values of total released heat were higher than those for pure Portland cement samples.

Keywords: calorimetry; cement; admixtures; additives; hydration

  • [1] Baert, G., Hoste, S., De Schutter, G., & De Belie, N. (2008). Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. Journal of Thermal Analysis and Calorimetry, 94, 485–492. DOI: 10.1007/s10973-007-8787-z. http://dx.doi.org/10.1007/s10973-007-8787-zWeb of ScienceCrossrefGoogle Scholar

  • [2] Brandštetr, J., Polcer, J., Krátký, J., Holešinský, R., & Havlica, J. (2001). Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cement and Concrete Research, 31, 941–947. DOI: 10.1016/s0008-8846(01)00495-1. http://dx.doi.org/10.1016/S0008-8846(01)00495-1CrossrefGoogle Scholar

  • [3] Duchesne, J., & Reardon, E. J. (1995). Measurement and prediction of portlandite solubility in alkali solutions. Cement and Concrete Research, 25, 1043–1053. DOI: 10.1016/0008-8846(95)00099-x. http://dx.doi.org/10.1016/0008-8846(95)00099-XCrossrefGoogle Scholar

  • [4] European Committee for Standardization (2003). European standard: Methods of testing cement — Part 8: Heat of hydration — Solution method. EN 196-8:2003 E. Brussels, Belgium. Google Scholar

  • [5] European Committee for Standardization (2010). European standard: Methods of testing cement — Part 9: Heat of hydration — Semi-adiabatic method. EN 196-9:2010 E. Brussels, Belgium. Google Scholar

  • [6] Erdem, T. K., & Kirca, Ö. (2008). Use of binary and ternary blends in high strength concrete. Construction and Building Materials, 22, 1477–1483. DOI:10.1016/j.conbuildmat.2007.03.026. http://dx.doi.org/10.1016/j.conbuildmat.2007.03.026CrossrefGoogle Scholar

  • [7] Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38, 226–246. DOI:10.1016/j.cemconres.2007.09.015. http://dx.doi.org/10.1016/j.cemconres.2007.09.015CrossrefWeb of ScienceGoogle Scholar

  • [8] Gruyaert, E., Robeyst, N., & De Belie, N. (2008). Modelling the hydration heat of Portland cement blended with blastfurnace slag. In Non-traditional cement and concrete III, June 10–12, 2008 (pp. 302–311). Brno, Czech Republic: Brno University of Technology. Google Scholar

  • [9] Gruyaert, E., Robeyst, N., & De Belie, N. (2010). Study of the hydration of Portland cement blended with blastfurnace slag by calorimetry and thermogravimetry. Journal of Thermal Analysis and Calorimetry, 102, 941–951. DOI: 10.1007/s10973-010-0841-6. http://dx.doi.org/10.1007/s10973-010-0841-6Web of ScienceCrossrefGoogle Scholar

  • [10] Guan, B., Ye, Q., Zhang, J., Lou, W., & Wu, Z. (2010). Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process. Cement and Concrete Research, 40, 253–259. DOI:10.1016/j.cemconres.2009.08.027. http://dx.doi.org/10.1016/j.cemconres.2009.08.027Web of ScienceCrossrefGoogle Scholar

  • [11] Habert, G., Choupay, N., Montel, J. M., Guillaume, D., & Escadeillas, G. (2008). Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 38, 963–975. DOI:10.1016/j.cemconres.2008.02.005. http://dx.doi.org/10.1016/j.cemconres.2008.02.005Web of ScienceCrossrefGoogle Scholar

  • [12] Ježo, Ľ., Palou, M., Kozánková, J., & Ifka, T. (2010). Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. Journal of Thermal Analysis and Calorimetry, 101, 585–593. DOI: 10.1007/s10973-010-0849-y. http://dx.doi.org/10.1007/s10973-010-0849-yCrossrefWeb of ScienceGoogle Scholar

  • [13] Khatib, J. M. (2008). Metakaolin concrete at a low water to binder ratio. Construction and Building Materials, 22, 1691–1700. DOI:10.1016/j.conbuildmat.2007.06.003. http://dx.doi.org/10.1016/j.conbuildmat.2007.06.003CrossrefGoogle Scholar

  • [14] Korpa, A., Kowald, T., & Trettin, R. (2008). Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cement and Concrete Research, 38, 955–962. DOI:10.1016/j.cemconres.2008.02.010. http://dx.doi.org/10.1016/j.cemconres.2008.02.010Web of ScienceCrossrefGoogle Scholar

  • [15] Krátký, J. (2004). Vliv přísad na vlastnosti anorganicko organických kompozitů. Unpublished PhD. thesis, Brno University of Technology, Brno, Czech Republic. Google Scholar

  • [16] Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29, 505–514. DOI:10.1016/j.cemconcomp.2007.01.001. http://dx.doi.org/10.1016/j.cemconcomp.2007.01.001CrossrefGoogle Scholar

  • [17] Pane, I., & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research, 35, 1155–1164. DOI:10.1016/j.cemconres.2004.10.027. http://dx.doi.org/10.1016/j.cemconres.2004.10.027CrossrefGoogle Scholar

  • [18] Rahhal, V., & Talero, R. (2009). Calorimetry of Portland cement with silica fume, diatomite and quartz additions. Construction and Building Materials, 23, 3367–3374. DOI:10.1016/j.conbuildmat.2009.06.003. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.003CrossrefWeb of ScienceGoogle Scholar

  • [19] Siler, P., Kratky, J., & De Belie, N. (2012). Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. Journal of Thermal Analysis and Calorimetry, 107, 313–320. DOI: 10.1007/s10973-011-1479-8. http://dx.doi.org/10.1007/s10973-011-1479-8Web of ScienceCrossrefGoogle Scholar

  • [20] Simard, M. A., Nkinamubanzi, P. C., Jolicoeur, C., Perraton, D., & Aïtcin, P. C. (1993). Calorimetry, rheology and compressive strength of superplasticized cement pastes. Cement and Concrete Research, 23, 939–950. DOI: 10.1016/0008-8846(93)90048-e. http://dx.doi.org/10.1016/0008-8846(93)90048-ECrossrefGoogle Scholar

  • [21] Sleiman, H., Perrot, A., & Amziane, S. (2010). A new look at the measurement of cementitious paste setting by Vicat test. Cement and Concrete Research, 40, 681–686. DOI:10.1016/j.cemconres.2009.12.001. http://dx.doi.org/10.1016/j.cemconres.2009.12.001Web of ScienceCrossrefGoogle Scholar

  • [22] Vessalas, K., Thomas, P. S., Ray, A. S., Guerbois, J. P., Joyce, P., & Haggman, J. (2009). Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 97, 71–76. DOI: 10.1007/s10973-008-9708-5. http://dx.doi.org/10.1007/s10973-008-9708-5Web of ScienceCrossrefGoogle Scholar

  • [23] Wild, S., & Khatib, J. M. (1997). Portlandite consumption in metakaolin cement pastes and mortars. Cement and Concrete Research, 27, 137–146. DOI: 10.1016/s0008-8846(96)00187-1. http://dx.doi.org/10.1016/S0008-8846(96)00187-1CrossrefGoogle Scholar

  • [24] Yamada, K. (2011). Basics of analytical methods used for the investigation of interaction mechanism between cements and superplasticizers. Cement and Concrete Research, 41, 793–798. DOI:10.1016/j.cemconres.2011.03.007. http://dx.doi.org/10.1016/j.cemconres.2011.03.007Web of ScienceCrossrefGoogle Scholar

  • [25] Zingg, A., Holzer, L., Kaech, A., Winnefeld, F., Pakusch, J., Becker, S., & Gauckler, L. (2008). The microstructure of dispersed and non-dispersed fresh cement pastes — new insight by cryo-microscopy. Cement and Concrete Research, 38, 522–529. DOI:10.1016/j.cemconres.2007.11.007. http://dx.doi.org/10.1016/j.cemconres.2007.11.007Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2012-11-30

Published in Print: 2013-02-01


Citation Information: Chemical Papers, Volume 67, Issue 2, Pages 213–220, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0256-x.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in