Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 67, Issue 3


Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa

Miroslav Horník
  • Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Šuňovská
  • Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denisa Partelová
  • Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Pipíška
  • Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Augustín
  • Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-27 | DOI: https://doi.org/10.2478/s11696-012-0235-2


The sorption of thioflavine T (TT) and malachite green (MG) cationic synthetic dyes on dried biomass of green microalga (Chlorella pyrenoidosa) immobilised in polyurethane foam under continuous column systems conditions using spectrophotometric methods of detection was investigated. Data characterising the sorption of TT and MG on microalgal biomass immobilised in polyurethane foam in a column system from single (C 0 = 25 μmol dm−3) or binary equimolar (C 0 = 25 μmol dm−3) dye solutions in the form of breakthrough curves were well described by the Thomas (R 2 = 0.994–0.912), Yoon-Nelson (R 2 = 0.994–0.911), and Clark (R 2 = 0.993–0.911) models. Useful parameters characterising the sorption column system were obtained from these mathematical models. The Thomas model, in particular, provided the Q max (maximal sorption capacity in μmol g−1) parameter for characterisation of biosorbent and also for evaluation of competitive effects in the TT and MG dyes sorption. For the purposes of biomass regeneration, a one-step desorption of the dyes studied from the microalgal biomass in batch and continuous column systems was performed. Efficiency of TT desorption from microalgal biomass increased in the order: deionised H2O (50.7 %), 99.5 vol. % 1,4-dioxane (67 %), 20 mmol dm−3 NiCl2 (83 %), 96 vol. % ethanol (85 %), 0.1 mol dm−3 HCl (89 %), 1 mol dm−3 acetic acid (89 %). In the case of MG, the desorption efficiency increased in the order: deionised H2O (13 %), 20 mmol dm−3 NiCl2 (50 %), 0.1 mol dm−3 HCl (91 %), 99.5 vol. % 1,4-dioxane (94 %), 1 mol dm−3 acetic acid (99 %), 96 vol. % ethanol (> 99 %). The presence of carboxyl, phosphoryl, amino, and hydroxyl groups, the important functional groups for sorption of cationic xenobiotics, was also confirmed on the algae biomass surface by potentiometric titration and ProtoFit modelling software. The data obtained showed that the dried immobilised algae biomass could be used as a sorbent for removing toxic xenobiotics from liquid wastewaters or contaminated waters and also presenting the possibilities of mathematical modelling of sorption processes in continuous column systems in order to obtain important parameters for use in practice.

Keywords: synthetic dyes; sorption; desorption; Chlorella pyrenoidosa; continuous column system, modelling

  • [1] Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026. DOI: 10.1016/j.procbio.2004.04.008. http://dx.doi.org/10.1016/j.procbio.2004.04.008CrossrefGoogle Scholar

  • [2] Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1–8. DOI: 10.2478/s11696-010-0083-x. http://dx.doi.org/10.2478/s11696-010-0083-xWeb of ScienceCrossrefGoogle Scholar

  • [3] Bohart, G., & Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society, 42, 523–544. DOI: 10.1021/ja01448a018. http://dx.doi.org/10.1021/ja01448a018CrossrefGoogle Scholar

  • [4] Bradbury, M. H., & Baeyens, B. (2009). Sorption modelling on illite Part I: Titration measurements and the sorption of Ni, Co, Eu and Sn. Geochimica et Cosmochimica Acta, 73, 990–1003. DOI: 10.1016/j.gca.2008.11.017. http://dx.doi.org/10.1016/j.gca.2008.11.017Web of ScienceCrossrefGoogle Scholar

  • [5] Branquinho, C., & Brown, D. H. (1994). A method for studying the cellular location of lead in lichens. The Lichenologist, 26, 83–90. DOI: 10.1006/lich.1994.1007. CrossrefGoogle Scholar

  • [6] Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination, 285, 22–30. DOI: 10.1016/j.desal.2011.09.023. http://dx.doi.org/10.1016/j.desal.2011.09.023Web of ScienceCrossrefGoogle Scholar

  • [7] Chen, G. Q., Zeng, G. M., Tang, L., Du, C. Y., Jiang, X. Y, Huang, G. H., Liu, H. L., & Shen, G. L. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresources Technology, 99, 7034–7040. DOI: 10.1016/j.biortech.2008.01.020. http://dx.doi.org/10.1016/j.biortech.2008.01.020CrossrefGoogle Scholar

  • [8] Clark, R. M. (1987). Evaluating the cost and performance of field-scale granular activated carbon systems. Environmental Science & Technology, 21, 573–580. DOI: 10.1021/es00160a008. http://dx.doi.org/10.1021/es00160a008CrossrefGoogle Scholar

  • [9] Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, I. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645. DOI: 10.1016/j.jhazmat.2008.06.042. http://dx.doi.org/10.1016/j.jhazmat.2008.06.042CrossrefGoogle Scholar

  • [10] Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2010). Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes. Bioresource Technology, 101, 9500–9507. DOI: 10.1016/j.biortech.2010.07.102. http://dx.doi.org/10.1016/j.biortech.2010.07.102CrossrefWeb of ScienceGoogle Scholar

  • [11] Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2012). Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips. Bioresource Technology, 106, 55–62. DOI: 10.1016/j.biortech.2011.12.003. http://dx.doi.org/10.1016/j.biortech.2011.12.003CrossrefWeb of ScienceGoogle Scholar

  • [12] Gad, H. M. H., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168, 1070–1081. DOI: 10.1016/j.jhazmat.2009.02.155. http://dx.doi.org/10.1016/j.jhazmat.2009.02.155CrossrefWeb of ScienceGoogle Scholar

  • [13] Gao, J. F., Zhang, Q., Su, K., & Wang, J. H. (2010). Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules: Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies. Bioresource Technology, 101, 5793–5801. DOI: 10.1016/j.biortech.2010.02.091. http://dx.doi.org/10.1016/j.biortech.2010.02.091Web of ScienceCrossrefGoogle Scholar

  • [14] Hornik, M., Pipiška, M., Augustin, J., Lesny, J., & Baratova, Z. (2007a). Distribution of 137Cs and 60Co in fresh water plants. Cereal Research Communications, 35, 477–480. DOI: 10.1556/crc.35.2007.2.78. http://dx.doi.org/10.1556/CRC.35.2007.2.78CrossrefWeb of ScienceGoogle Scholar

  • [15] Hornik, M., Pipiška, M., Augustin, J., Lesny, J., & Kočiova, M. (2007b). Distribution of 137Cs and 60Co in components of fresh water system. Cereal Research Communications, 35, 473–476. DOI: 10.1556/crc.35.2007.2.77. http://dx.doi.org/10.1556/CRC.35.2007.2.77CrossrefWeb of ScienceGoogle Scholar

  • [16] Khataee, A. R. Zarei, M., Dehghan, G., Ebadi, E., & Pourhassan, M. (2011). Biotreatment of a triphenylmethane dye solution using a Xanthophyta alga: Modeling of key factors by neural network. Journal of the Taiwan Institute of Chemical Engineers, 42, 380–386. DOI: 10.1016/j.jtice.2010.08.006. http://dx.doi.org/10.1016/j.jtice.2010.08.006CrossrefWeb of ScienceGoogle Scholar

  • [17] Koprivanac, N., & Kusic, H. (2008). Hazardous organic pollutants in colored wastewaters (pp. 81). New York, NY, USA: Nova Science Publishers. Google Scholar

  • [18] Lim, S. L., Chu, W. L., & Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101, 7314–7322. DOI: 10.1016/j.biortech.2010.04.092. http://dx.doi.org/10.1016/j.biortech.2010.04.092CrossrefGoogle Scholar

  • [19] Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138. DOI: 10.1016/j.wasman.2006.06.009. http://dx.doi.org/10.1016/j.wasman.2006.06.009CrossrefWeb of ScienceGoogle Scholar

  • [20] Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25, 113–152. DOI: 10.1080/07388550500248571. http://dx.doi.org/10.1080/07388550500248571CrossrefGoogle Scholar

  • [21] Muhamad, H., Doan, H., & Lohi, A. (2010). Batch and continuous fixed-bed column biosorption of Cd2+ and Cu2+. Chemical Engineering Journal, 158, 369–377. DOI: 10.1016/j.cej.2009.12.042. http://dx.doi.org/10.1016/j.cej.2009.12.042CrossrefGoogle Scholar

  • [22] Naja, G., & Volesky, B. (2006). Multi-metal biosorption in a fixed-bed flow-through column. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 194–201. DOI: 10.1016/j.colsurfa.2006.02.040. http://dx.doi.org/10.1016/j.colsurfa.2006.02.040CrossrefGoogle Scholar

  • [23] Park, D. H., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15, 86–102. DOI: 10.1007/s12257-009-0199-4. http://dx.doi.org/10.1007/s12257-009-0199-4CrossrefWeb of ScienceGoogle Scholar

  • [24] Rao, K. S., Anand, S., & Venkateswarlu, P. (2011). Modeling the kinetics of Cd(II) adsorption on Syzygium cumini L. leaf powder in a fixed bed mini column. Journal of Industrial and Engineering Chemistry, 17, 174–181. DOI: 10.1016/j.jiec.2011.02.003. http://dx.doi.org/10.1016/j.jiec.2011.02.003CrossrefGoogle Scholar

  • [25] Rathinam, A., Maharshi, B., Janardhanan, S. K., Jonnalagadda, R. R., & Nair, B. U. (2010). Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresource Technology, 101, 1466–1470. DOI: 10.1016/j.biortech.2009. 08.008. http://dx.doi.org/10.1016/j.biortech.2009.08.008Web of ScienceCrossrefGoogle Scholar

  • [26] Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textiles effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. DOI: 10.1016/s0960-8524(00)00080-8. http://dx.doi.org/10.1016/S0960-8524(00)00080-8CrossrefGoogle Scholar

  • [27] Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13. DOI: 10.1016/j.desal.2011.07.019. http://dx.doi.org/10.1016/j.desal.2011.07.019Web of ScienceCrossrefGoogle Scholar

  • [28] Tang, L., Zeng, G. M., Shen, G. L., Li, Y. P., Zhang, Y., & Huang, D. L. (2008). Rapid detection of picloram in agricultural field samples using a disposable immunomembranebased electrochemical sensor. Environmental Science & Technology, 42, 1207–1212. DOI: 10.1021/es7024593. http://dx.doi.org/10.1021/es7024593Web of ScienceCrossrefGoogle Scholar

  • [29] Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666. DOI: 10.1021/ja01238a017. http://dx.doi.org/10.1021/ja01238a017CrossrefGoogle Scholar

  • [30] Turner, B. F., & Fein, J. B. (2006). Protofit: A program for determining surface protonation constants from titration data. Computers & Geosciences, 32, 1344–1356. DOI: 10.1016/j.cageo.2005.12.005. http://dx.doi.org/10.1016/j.cageo.2005.12.005CrossrefGoogle Scholar

  • [31] Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93, 154–168. DOI: 10.1016/j.jenvman.2011.09.012. http://dx.doi.org/10.1016/j.jenvman.2011.09.012CrossrefWeb of ScienceGoogle Scholar

  • [32] Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291. DOI: 10.1016/j.biotechadv.2008.02.002. http://dx.doi.org/10.1016/j.biotechadv.2008.02.002Web of ScienceCrossrefGoogle Scholar

  • [33] Volesky, B. (2003). Sorption and biosorption (pp. 316). Quebec, Canada: BV Sorbex. Google Scholar

  • [34] Wang, J. L., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226. DOI: 10.1016/j.biotechadv.2008.11.002. http://dx.doi.org/10.1016/j.biotechadv.2008.11.002Web of ScienceCrossrefGoogle Scholar

  • [35] Yan, G. G., Viraraghavan, T., & Chen, M. (1999). A new model for heavy metal removal in a biosorption column. Adsorption Science & Technology, 19, 25–43. DOI: 10.1260/0263617011493953. http://dx.doi.org/10.1260/0263617011493953CrossrefGoogle Scholar

  • [36] Yoon, Y. H., & Nelson, J. H. (1984). Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time. American Industrial Hygiene Association Journal, 45, 509–516. DOI: 10.1080/15298668491400197. CrossrefGoogle Scholar

  • [37] Zhang, Y. S., Liu, W. G., Xu, M., Zheng, F., & Zhao, M. J. (2010). Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass. Journal of Hazardous Materials, 178, 1085–1093. DOI: 10.1016/j.jhazmat.2010.02.051. http://dx.doi.org/10.1016/j.jhazmat.2010.02.051CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2012-12-27

Published in Print: 2013-03-01

Citation Information: Chemical Papers, Volume 67, Issue 3, Pages 254–264, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0235-2.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in