Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 67, Issue 3

Issues

Sludge of wastewater treatment plants as Co2+ ions sorbent

Vladimír Frišták
  • Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Pipiška
  • Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav Horník
  • Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Augustín
  • Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juraj Lesný
  • Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01, Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-27 | DOI: https://doi.org/10.2478/s11696-012-0244-1

Abstract

Sludges produced in huge amounts by wastewater treatment plants (WWTP) display high fertility properties; however, the presence of heavy metals restricts their use for agricultural purposes. Sorption capacity of sludge is generally much higher and it can also be considered as a cheap sorbent of heavy metals. The paper describes cobalt sorption by dried activated sludge (DAS) obtained from the aerobic phase of a WWTP. DAS was characterized by FT-IR spectroscopy, cation exchange capacity (CEC), and atomic absorption spectrometry (AAS) analysis. Sorption capacity of DAS (Q eq) increased with the initial concentration (C 0) of Co2+ (CoCl2) within the range from 100 μmol g−1 to 4000 μmol g−1, reaching 15 μmol g−1 and 200 μmol g−1, respectively. The maximum uptake capacity (Q max) at pH 6.0 calculated from the Langmuir isotherm model was (256 ± 9) μmol g−1 for Co2+ ions. Obtained Q values were dependent on pH within the range from 3.0 to 7.0. Competitive effect of other bivalent cations such as Ni2+ in Co2+ sorption equilibrium was confirmed; which is in agreement with the hypothesis of the decisive role of ion-exchange mechanism in metal sorption. The obtained data are discussed from the point of view of potential utilization of sludges as sorbents, i.e. in non-agricultural application.

Keywords: activated sludge; sorption; cobalt; chemical modification; cation exchange capacity

  • [1] Aksu, Z., Açikel, U., Kabasakal, E., & Tezer, S. (2002). Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Research, 36, 3063–3073. DOI: 10.1016/s0043-1354(01)00530-9. http://dx.doi.org/10.1016/S0043-1354(01)00530-9CrossrefGoogle Scholar

  • [2] Chen, J. P., Lie, D., Wang, L., Wu, S., & Zhang, B. (2002). Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching. Journal of Chemical Technology and Biotechnology, 77, 657–662. DOI: 10.1002/jctb.627. http://dx.doi.org/10.1002/jctb.627CrossrefGoogle Scholar

  • [3] Chovancová, D., Lesný, J., & Chmielewska, E. (2005). Study of sorption of selenite and selenate by selected sorbents. Nova Biotechnologica, 5, 27–37. Google Scholar

  • [4] Dionisi, D., Levantesi, C., Majone, M., Bornoroni, L., & De Sanctis, M. (2007). Effect of micropollutants (organic xenobiotics and heavy metals) on the activated sludge process. Industrial and Engineering Chemistry Research, 46, 6762–6769. DOI: 10.1021/ie061688c. http://dx.doi.org/10.1021/ie061688cCrossrefWeb of ScienceGoogle Scholar

  • [5] Dreywood, R. (1946). Qualitative test for carbohydrate material. Industrial and Engineering Chemistry Analytical Edition, 18, 499–504. DOI: 10.1021/i560156a015. http://dx.doi.org/10.1021/i560156a015CrossrefGoogle Scholar

  • [6] Ellmann, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77. DOI: 10.1016/0003-9861(59)90090-6. http://dx.doi.org/10.1016/0003-9861(59)90090-6CrossrefGoogle Scholar

  • [7] Guibaud, G., Comte, S., Bordas, F., Dupuy, S., & Baudu, M. (2005). Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strain, for cadmium, lead and nickel. Chemosphere, 59, 629–638. DOI: 10.1016/j.chemosphere.2004.10.028. http://dx.doi.org/10.1016/j.chemosphere.2004.10.028CrossrefGoogle Scholar

  • [8] Guibaud, G., van Hullebusch, E., Bordas, F., d’Abzac, P., & Joussein, E. (2009). Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modelling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology, 100, 2959–2968. DOI: 10.1016/j.biortech.2009.01.040. http://dx.doi.org/10.1016/j.biortech.2009.01.040Web of ScienceCrossrefGoogle Scholar

  • [9] Gustafson, J. P. (2010). Visual-MINTEQ, version 3.0 [computer software]. Stockholm, Sweden: Kungliga Tekniska Högskolan. Google Scholar

  • [10] Hammaini, A., González, F., Ballester, A., Blázquez, M. L., & Muñoz, J. A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84, 419–426. DOI: 10.1016/j.jenvman.2006.06.015. http://dx.doi.org/10.1016/j.jenvman.2006.06.015Web of ScienceCrossrefGoogle Scholar

  • [11] Krishnan, K. A., & Anirudhan, T. S. (2008). Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chemical Engineering Journal, 137, 257–264. DOI: 10.1016/j.cej.2007.04.029. http://dx.doi.org/10.1016/j.cej.2007.04.029Web of ScienceCrossrefGoogle Scholar

  • [12] Kumar, M., Adham, S. S., & Pearce, W. R. (2006). Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type. Environmental Science & Technology, 40, 2037–2044. DOI: 10.1021/es0512428. http://dx.doi.org/10.1021/es0512428CrossrefGoogle Scholar

  • [13] Kuyucak, N., & Volesky, B. (1989). Accumulation of cobalt by marine alga. Biotechnology and Bioengineering, 33, 809–814. DOI: 10.1002/bit.260330703. http://dx.doi.org/10.1002/bit.260330703CrossrefGoogle Scholar

  • [14] Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. Google Scholar

  • [15] Marešová, J., Horník, M., Pipíška, M., & Augustín, J. (2010). Sorption of Co2+, Zn2+, Cd2+ and Cs+ ions by activated sludge of sewage treatment plant. Nova Biotechnologica, 10, 53–61. Google Scholar

  • [16] Marešová, J., Pipíška, M., Rozložník, M., Horník, M., Remenárová, L., & Augustin, J. (2011). Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination, 266, 134–141. DOI: 10.1016/j.desal.2010.08.014. http://dx.doi.org/10.1016/j.desal.2010.08.014Web of ScienceCrossrefGoogle Scholar

  • [17] Nadeem, R., Hanif, M. A., Shaheen, F., Perveen, S., Zafar, M. N., & Iqbal, T. (2008). Physical and chemical modification of distillery sludge for Pb(II) biosorption. Journal of Hazardous Materials, 150, 335–342. DOI: 10.1016/j.jhazmat.2007.04.110. http://dx.doi.org/10.1016/j.jhazmat.2007.04.110Web of ScienceCrossrefGoogle Scholar

  • [18] Nagpal, N. K. (2004). Water quality guidelines for cobalt. Victoria, BC, Canada: Ministry of Water, Land and Air Protection. (TD226.B7N33 2004) Google Scholar

  • [19] National Council of the Slovak Republic (2000). Zákon o hnojivách č. 136/2000 Z.z. Bratislava Slovakia: IURA edition. Google Scholar

  • [20] National Council of the Slovak Republic (2001). Zákon o odpadoch č. 223/2001 Z.z. Bratislava Slovakia: IURA edition. Google Scholar

  • [21] National Council of the Slovak Republic (2003). Zákon 5.188/2003 o aplikácii čistiarenskeho kalu a dnových sedimentov do pôdy a o doplnení zákona o odpadoch č. 223/2001 Z.z. o odpadoch a o zmene a doplnení niektorých zákonov v znení neskoršich predpisov. Bratislava Slovakia: IURA edition. Google Scholar

  • [22] Ministry of Environment of the Slovak Republic (2010). National report on water resources. Management in SR 2009. Bratislava, Slovakia: Water Research Institute. Google Scholar

  • [23] Nieboer, E., & Richardson, D. H. S. (1980). The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environmental Pollution Series B, Chemical and Physical, 1, 3–26. DOI: 10.1016/0143-148x(80)90017-8. http://dx.doi.org/10.1016/0143-148X(80)90017-8CrossrefGoogle Scholar

  • [24] Pal, A., Ghosh, S., & Paul, A. K. (2006). Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresource Technology, 97, 1253–1258. DOI: 10.1016/j.biortech.2005.01.043. http://dx.doi.org/10.1016/j.biortech.2005.01.043CrossrefGoogle Scholar

  • [25] Pipíška, M., Horník, M., Vrtoch, Ľ., Augustín, J., & Lesný, J. (2007). Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia, 62, 276–282. DOI: 10.2478/s11756-007-0047-y. http://dx.doi.org/10.2478/s11756-007-0047-yWeb of ScienceCrossrefGoogle Scholar

  • [26] Remenárová, L., Pipíška, M., Horník, M., Rozložník, M., Augustín, J., & Lesný, J. (2012). Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study. Journal of the Taiwan Institute of Chemical Engineers, 43, 433–443. DOI: 10.1016/j.jtice.2011.12.004. http://dx.doi.org/10.1016/j.jtice.2011.12.004CrossrefGoogle Scholar

  • [27] Slovak Institute of Metrology (2003). Slovak technical standard: Kvalita pôdy. Stanovenie výmennej kapacity katiónov a hodnoty nasýtenia zásadami pomocou roztoku chloridu bárnatého. ISO 11260. Bratislava, Slovakia. Google Scholar

  • [28] Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Bao, N., & Gao, B. Y. (2008). Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules. Journal of Colloid Interface Science, 324, 1–8. DOI: 10.1016/j.jcis.2008.04.049. http://dx.doi.org/10.1016/j.jcis.2008.04.049CrossrefWeb of ScienceGoogle Scholar

  • [29] Turner, B. F., & Fein, J. B. (2006). Protofit: A program for determining surface protonation constants from titration data. Computers & Geosciences, 32, 1344–1356. DOI: 10.1016/j.cageo.2005.12.005. http://dx.doi.org/10.1016/j.cageo.2005.12.005CrossrefGoogle Scholar

  • [30] Verbeken, K., Vanheule, B., Pinoy, L., & Verhaege, M. (2009). Cobalt removal from waste-water by means of supported liquid membranes. Journal of Chemical Technology and Biotechnology, 84, 711–715. DOI: 10.1002/jctb.2103. http://dx.doi.org/10.1002/jctb.2103CrossrefGoogle Scholar

  • [31] Vijayaraghavan, K., Jegan, J., Palanivenu, K., & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology, 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003. http://dx.doi.org/10.1016/j.seppur.2004.12.003CrossrefGoogle Scholar

  • [32] Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216. DOI: 10.1016/s0304-386x(00)00160-2. http://dx.doi.org/10.1016/S0304-386X(00)00160-2CrossrefGoogle Scholar

  • [33] Zhang, Y., & Banks, C. (2006). A comparison of the properties of polyurethane immobilized Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Research, 40, 788–798. DOI: 10.1016/j.watres.2005.12.011. http://dx.doi.org/10.1016/j.watres.2005.12.011CrossrefGoogle Scholar

About the article

Published Online: 2012-12-27

Published in Print: 2013-03-01


Citation Information: Chemical Papers, Volume 67, Issue 3, Pages 265–273, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0244-1.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in