Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 67, Issue 3

Issues

Bulgarian natural diatomites: modification and characterization

Paunka Vassileva
  • Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, bl. 11, Acad. G. Bontchev str., BG-1113, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Madlena Apostolova
  • Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, bl. 11, Acad. G. Bontchev str., BG-1113, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Albena Detcheva
  • Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, bl. 11, Acad. G. Bontchev str., BG-1113, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elisaveta Ivanova
  • Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, bl. 11, Acad. G. Bontchev str., BG-1113, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-27 | DOI: https://doi.org/10.2478/s11696-012-0272-x

Abstract

Natural Bulgarian diatomite modified by oxidation with sulfuric acid and H2O2 or by coating with manganese oxide was characterized considering its chemical composition, surface area, pore volume, and structure. Modified diatomites displayed larger surface area and pore volumes in comparison with untreated natural diatomite, which favored their sorption behavior. Sorption properties of diatomites towards Fe3+, Pb2+, Cu2+, Cd2+, Mn2+, Ni2+, Co2+, Cr3+, Pd2+, Ca2+, and Mg2+ were investigated and their sorption capacities were determined. Sorption properties of manganese oxide-modified diatomite were superior to those of diatomite modified by oxidation. Owing to its high sorption capacity towards Co2+, Ni2+, Pb2+, Cr3+, Fe2+, Cu2+, and Cd2+, the manganese oxide-modified diatomite is a promising low-cost sorbent for selective removal of milligram amounts of these toxic metal ions from contaminated water.

Keywords: natural diatomites; modification; adsorption; toxic metal ions

  • [1] Antonides, L. E. (1998). Diatomite. In Mineral commodity summaries (pp. 56–57). Reston, VA, USA: US Geological Survey. Google Scholar

  • [2] Al-Degs, Y., Khraisheh, M. A. M., & Tutunji, M. F. (2001). Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Research, 35, 3724–3728. DOI: 10.1016/s0043-1354(01)00071-9. http://dx.doi.org/10.1016/S0043-1354(01)00071-9CrossrefGoogle Scholar

  • [3] Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 69, 229–238. DOI: 10.1016/j.jenvman.2003.09.005. http://dx.doi.org/10.1016/j.jenvman.2003.09.005CrossrefGoogle Scholar

  • [4] Al-Ghouti, M. A., Khraisheh, M. A. M., Ahmad, M. N. M., & Allen, S. (2009). Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. Journal of Hazardous Materials, 165, 589–598. DOI: 10.1016/j.jhazmat.2008.10.018. http://dx.doi.org/10.1016/j.jhazmat.2008.10.018Web of ScienceCrossrefGoogle Scholar

  • [5] Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. DOI: 10.1016/s0304-3894(02)00263-7. http://dx.doi.org/10.1016/S0304-3894(02)00263-7CrossrefGoogle Scholar

  • [6] Bailey, S. E., Olin, T. J., Brica, R. M., & Adrian, D. D. (1999). A review of the potentially low-cost sorbents for heavy metals. Water Research, 33, 2469–2479. DOI: 10.1016/s0043-1354(98)00475-8. http://dx.doi.org/10.1016/S0043-1354(98)00475-8CrossrefGoogle Scholar

  • [7] Bakr, H. E. G. M. M. (2010). Diatomite: Its characterization, modifications and applications. Asian Journal of Material Science, 2, 121–136. DOI: 10.3923/ajmskr.2010.121.136. http://dx.doi.org/10.3923/ajmskr.2010.121.136CrossrefGoogle Scholar

  • [8] Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140, 114–131. DOI: 10.1016/j.cis.2007.12.008. http://dx.doi.org/10.1016/j.cis.2007.12.008Web of ScienceCrossrefGoogle Scholar

  • [9] Boevski, I., Genov, K., Boevska, N., Milenova, K., Batakliev, T., Georgiev, V., Nikolov, P., & Sarker, D. K. (2011). Low temperature ozone decomposition on Cu2+, Zn2+ and Mn2+-exchanged clinoptilolite. Comptes Rendus de l’Académie Bulgare des Sciences, 64, 33–38. Google Scholar

  • [10] Brandão, M. S. B., & Galembeck, F. (1990). Copper, lead and zinc adsorption on MnO2-impregnated cellulose acetate. Colloids and Surfaces, 48, 351–362. DOI: 10.1016/0166-6622(90)80240-5. http://dx.doi.org/10.1016/0166-6622(90)80240-5CrossrefGoogle Scholar

  • [11] Eren, E. (2008). Removal of copper ions by modified Unye clay, Turkey. Journal of Hazardous Materials, 159, 235–244. DOI: 10.1016/j.jhazmat.2008.02.035. http://dx.doi.org/10.1016/j.jhazmat.2008.02.035CrossrefGoogle Scholar

  • [12] Eren, E., Afsin, B., & Onal, Y. (2009). Removal of lead ions by acid activated and manganese oxide-coated bentonite. Journal of Hazardous Materials, 161, 677–685. DOI: 10.1016/j.jhazmat.2008.04.020 http://dx.doi.org/10.1016/j.jhazmat.2008.04.020Web of ScienceCrossrefGoogle Scholar

  • [13] Fan, H. J., & Anderson, P. R. (2005). Copper and cadmium removal by Mn oxide-coated granular activated carbon, Separation and Purification Technology, 45, 61–67. DOI: 10.1016/j.seppur.2005.02.009. http://dx.doi.org/10.1016/j.seppur.2005.02.009CrossrefGoogle Scholar

  • [14] Gocheva, E. (1983). Physico-chemical properties of natural Bulgarian diatomites and possibilities for their regulation. PhD. thesis, Bulgarian Academy of Sciences, Sofia, Bulgaria. Google Scholar

  • [15] Gocheva, E., Lakov, L., & Tsvetanova, K. (1989). A method of preparation of powdered materials from natural infusorial earths with a high impurity content. Communications of the Department of Chemistry of the Bulgarian Academy of Sciences, 22, 656–668. (in Russian) Google Scholar

  • [16] Gocheva, E., Vassileva, P., Lakov, L., & Peshev, O. (1993). Phosphazenes on diatomaceous earths in water adsorption. Journal of Materials Science, 28, 5251–5256. DOI: 10.1007/bf00570073. http://dx.doi.org/10.1007/BF00570073CrossrefGoogle Scholar

  • [17] Gürü, M., Venedik, D., & Murathana, A. (2008). Removal of trivalent chromium from water using low-cost natural diatomite. Journal of Hazardous Materials,160, 318–323 DOI: 10.1016/j.jhazmat.2008.03.002. http://dx.doi.org/10.1016/j.jhazmat.2008.03.002CrossrefGoogle Scholar

  • [18] Han, R. P., Lu, Z., Zou, W. H., Wang, D. T., Jie, S., & Yang, J. J. (2006). Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: II. Equilibrium study and competitive adsorption. Journal of Hazardous Materials, 137, 480–488. DOI: 10.1016/j.jhazmat.2006.02.018. http://dx.doi.org/10.1016/j.jhazmat.2006.02.018CrossrefGoogle Scholar

  • [19] Khraisheh, M. A. M., Al-degs, Y. S., & Mcminn, W. A. M. (2004). Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal, 99, 177–184. DOI: 10.1016/j.cej.2003.11.029. http://dx.doi.org/10.1016/j.cej.2003.11.029CrossrefGoogle Scholar

  • [20] Khraisheh, M. A. M., Al-Ghouti, M. A., Allen, S. J., & Ahmad, M. N. (2005). Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 39, 922–932. DOI: 10.1016/j.watres.2004.12.008. http://dx.doi.org/10.1016/j.watres.2004.12.008CrossrefGoogle Scholar

  • [21] Kooli, F., & Jones, W. (1997). Characterization and catalytic properties of a saponite clay modified by acid activation. Clay Minerals, 32, 633–643. DOI: 10.1180/claymin.1997.032.4.13. http://dx.doi.org/10.1180/claymin.1997.032.4.13CrossrefGoogle Scholar

  • [22] Lakov, L., Vassileva, P., & Gocheva, E. (1995). Sorption of Co(II), Ni(II), Ag(I) and Au(III) on pyrazolone-containing inorganic sorbents. Fresenius’ Journal of Analytical Chemistry, 351, 583–584. DOI: 10.1007/bf00322737. http://dx.doi.org/10.1007/BF00322737CrossrefGoogle Scholar

  • [23] Li, E., Zeng, X. Y., & Fan, Y. H. (2009). Removal of chromium ion (III) from aqueous solution by manganese oxide and microemulsion modified diatomite. Desalination, 238, 158–165. DOI: 10.1016/j.desal.2007.11.062. http://dx.doi.org/10.1016/j.desal.2007.11.062Web of ScienceCrossrefGoogle Scholar

  • [24] Lü, R. Q., Tangbo, H. J., Wang, Q. Y., & Xiang, S. H. (2003). Properties and characterization of modifed HZSM-5 zeolites. Journal of Natural Gas Chemistry, 12, 56–62. Google Scholar

  • [25] Merkle, P. B., Knocke, W. R., & Gallagher, D. L. (1997). Method for coating filter media with synthetic manganese oxide. Journal of Environmental Engineering, 123, 642–649. DOI: 10.1061/(ASCE)0733-9372(1997)123:7(642). http://dx.doi.org/10.1061/(ASCE)0733-9372(1997)123:7(642)CrossrefGoogle Scholar

  • [26] Mohamedbakr, H., & Burkitbaev, M. (2008). Immobilization of lead ion from aqueous solutions by using natural/processed diatomite. Oecologia Aegyptiaca, 1, 21–29. Google Scholar

  • [27] Moore, W. S., & Reid, D. F. (1973). Extraction of radium from natural waters using manganese-impregnated acrylic fibres. Journal of Geophysical Research, 78, 8880–8886. DOI: 10.1029/jc078i036p08880. http://dx.doi.org/10.1029/JC078i036p08880CrossrefGoogle Scholar

  • [28] Pierce, C. (1953). Computation of pore sizes from physical adsorption data. Journal of Physical Chemistry, 57, 149–152. DOI: 10.1021/j150503a005. http://dx.doi.org/10.1021/j150503a005CrossrefGoogle Scholar

  • [29] Pookmanee, P., Thippraphan, P., & Phanichphant, S. (2010). Manganese chloride modification of natural diatomite by using hydrothermal method. Journal of the Microscopy Society of Thailand, 24(2), 99–102. Google Scholar

  • [30] Puanngam, M., & Unob, F. (2008). Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions. Journal of Hazardous Materials, 154, 578–587. DOI: 10.1016/j.jhazmat.2007.10.090. http://dx.doi.org/10.1016/j.jhazmat.2007.10.090Web of ScienceCrossrefGoogle Scholar

  • [31] Sagara, F., Ning, W. B., Yoshida, I., & Ueno, K. (1989). Preparation and adsorption properties of λ-MnO2-cellulose hybridtype ion-exchanger for lithium ion. Application to the enrichment of lithium ion from seawater. Separation Science and Technology, 24, 1227–1243. DOI: 10.1080/014963989080498 99. CrossrefGoogle Scholar

  • [32] Semushin, A. M., Belov, B. A., & Stepchenko, I. V. (1984). Modification of active carbons with manganese dioxide. Journal of Applied Chemistry of the USSR, 57, 2411–2412. Google Scholar

  • [33] Shawabkeh, R. A., & Tutunji, M. F. (2003). Experimental study and modeling of basic dye sorption by diatomaceous clay. Applied Clay Science, 24, 111–120. DOI: 10.1016/s0169-1317(03)00154-6. http://dx.doi.org/10.1016/S0169-1317(03)00154-6CrossrefWeb of ScienceGoogle Scholar

  • [34] Sheng, G. D., Wang, S. W., Hu, J., Lua, Y., Li, J. X., Dong, Y. H., & Wang, X. K. (2009). Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids and Surfaces A, 339, 159–166. DOI: 10.1016/j.colsurfa.2009.02.016. http://dx.doi.org/10.1016/j.colsurfa.2009.02.016Web of ScienceCrossrefGoogle Scholar

  • [35] Todorova, O., Vassileva, P., & Lakov, L. (1993). Synthesis and characterization of inorganic sorbents containing pyrazolone. Fresenius’ Journal of Analytical Chemistry, 346, 943–946. DOI: 10.1007/bf00322755. http://dx.doi.org/10.1007/BF00322755CrossrefGoogle Scholar

  • [36] Tripathy, S. S., & Kanungo, S. B. (2005). Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH. Journal of Colloid and Interface Science, 284, 30–38. DOI: 10.1016/j.jcis.2004.09.054. http://dx.doi.org/10.1016/j.jcis.2004.09.054Google Scholar

  • [37] Tripathy, S. S., Bersillon, J. L., & Gopal, K. (2006). Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 194, 11–21. DOI: 10.1016/j.desal.2005.10.023. http://dx.doi.org/10.1016/j.desal.2005.10.023CrossrefGoogle Scholar

  • [38] Tsai, W. T., Hsien, K. J., & Yang, J. M. J. (2004). Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution. Journal of Colloid and Interface Science, 275, 428–433. DOI: 10.1016/j.jcis2004.02.093. http://dx.doi.org/10.1016/j.jcis.2004.02.093CrossrefGoogle Scholar

  • [39] Tsai, W. T., Hsien, K. J., Chang, Y. M., & Lo, C. C. (2005). Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource Technology, 96, 657–663. DOI: 10.1016/j.biortech.2004.06.023. http://dx.doi.org/10.1016/j.biortech.2004.06.023CrossrefGoogle Scholar

  • [40] Vassileva, P., Gentscheva, G., Ivanova, E., Tzvetkova, P., Voykova, D., & Apostolova, M. (2011). Characterization of natural diatomites from Bulgaria. Comptes Rendus de l’Académie Bulgare des Sciences, 64, 823–830. Google Scholar

About the article

Published Online: 2012-12-27

Published in Print: 2013-03-01


Citation Information: Chemical Papers, Volume 67, Issue 3, Pages 342–349, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0272-x.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in