Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 67, Issue 3

Issues

Experimental investigation of bubble and drop formation at submerged orifices

Nicolas Dietrich
  • INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
  • INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
  • CNRS, UMR5504, F-31400, Toulouse, France
  • Laboratory of Reactions and Process Engineering, CNRS, Université de Lorraine, 1 rue Grandville, F-54000, Nancy, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nadia Mayoufi / Souhil Poncin / Huai-Zhi Li
Published Online: 2012-12-27 | DOI: https://doi.org/10.2478/s11696-012-0277-5

Abstract

The aim of this study was to investigate bubble/drop formation at a single submerged orifice in stagnant Newtonian fluids and to gain qualitative understanding of the formation mechanism. The effects of various governing parameters were studied. Formation behavior of bubbles and drops in Newtonian aqueous solutions were investigated experimentally under different operating conditions with various orifices. The results show that the volume of the detached dispersed phase (bubble or drop) increases with the viscosity of the continuous phase (or dispersion medium), surface tension, orifice diameter, and dispersed phase flow rate. A PIV system was employed to measure the velocity flow field quantitatively during the bubble/drop formation, giving interesting information useful for the elucidation of the fundamental formation process at the orifice. It was revealed that the orifice shape strongly influences the size of the bubble formed. Furthermore, based on a simple mass balance, a general correlation successfully predicting both bubble and drop sizes has been proposed.

Keywords: bubble; drop; formation; PIV measurements

  • [1] Badam, V. K., Buwa, V., & Durst, F. (2007). Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition. Canadian Journal of Chemical Engineering, 85, 257–267. DOI: 10.1002/cjce.5450850301. http://dx.doi.org/10.1002/cjce.5450850301CrossrefGoogle Scholar

  • [2] Bashforth, F., & Adams, J. C. (1883). An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid with an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops. Cambridge, UK: Cambridge University Press. Google Scholar

  • [3] Chang, B., Nave, G., & Jung, S. H. (2012). Drop formation from a wettable nozzle. Communications in Nonlinear Science and Numerical Simulation, 17, 2045–2051. DOI: 10.1016/j.cnsns.2011.08.023. http://dx.doi.org/10.1016/j.cnsns.2011.08.023Web of ScienceCrossrefGoogle Scholar

  • [4] Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. New York, NY, USA: Academic Press. Google Scholar

  • [5] Davidson, J. F., & Schüler, B. O. G. (1960a). Bubble formation at an orifice in a viscous liquid. Transactions of the Institution of Chemical Engineers, 38, 144–154. Google Scholar

  • [6] Davidson, J. F., & Schüler, B. O. G. (1960b). Bubble formation at an orifice in an inviscid liquid. Transactions of the Institution of Chemical Engineers, 38, 335–342. Google Scholar

  • [7] de Chazal, L. E. M., & Ryan, J. T. (1971). Formation of organic drops in water. AIChE Journal, 17, 1226–1229. DOI: 10.1002/aic.690170531. http://dx.doi.org/10.1002/aic.690170531CrossrefGoogle Scholar

  • [8] Dietrich, N., Poncin, S., Pheulpin, S., & Li, H. Z. (2008). Passage of a bubble through a liquid-liquid interface. AICHE Journal, 54, 594–600. DOI: 10.1002/aic.11399. http://dx.doi.org/10.1002/aic.11399Web of ScienceCrossrefGoogle Scholar

  • [9] Dietrich, N., Poncin, S., & Li, H. Z. (2011). Dynamical deformation of a flat liquid-liquid interface. Experiments in Fluids, 50, 1293–1303. DOI: 10.1007/s00348-010-0989-7. http://dx.doi.org/10.1007/s00348-010-0989-7Web of ScienceCrossrefGoogle Scholar

  • [10] Frank, X., Funfschilling, D., Midoux, N., & Li, H. Z. (2006). Bubbles in a viscous liquid: lattice Boltzmann simulation and experimental validation. Journal of Fluid Mechanics, 546, 113–122. DOI: 10.1017/s0022112005007135. http://dx.doi.org/10.1017/S0022112005007135CrossrefGoogle Scholar

  • [11] Funfschilling, D., & Li, H. Z. (2001). Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualization. Chemical Engineering Science, 56, 1137–1141. DOI: 10.1016/s0009-2509(00)00332-8. http://dx.doi.org/10.1016/S0009-2509(00)00332-8CrossrefGoogle Scholar

  • [12] Gaddis, E., & Vogelpohl, A. (1986). Bubble formation in quiescent liquids under constant flow conditions. Chemical Engineering Science, 41, 97–105. DOI: 10.1016/0009-2509(86)85202-2. http://dx.doi.org/10.1016/0009-2509(86)85202-2CrossrefGoogle Scholar

  • [13] Heertjes, P. M., & de Nie, L. H. (1971). Mass transfer to drops. In C. Hanson (Ed.), Recent advances in liquid-liquid extraction (pp. 367–406). Oxford, UK: Pergamon Press. Google Scholar

  • [14] Jamialahmadi, M., Zehtaban, M. R., Müller-Steinhagen, H. M., Sarrafi, A., & Smith, J. M. (2001). Study of bubble formation under constant flow conditions. Chemical Engineering Research and Design, 79, 523–532. DOI: 10.1205/02638760152424299. http://dx.doi.org/10.1205/02638760152424299CrossrefGoogle Scholar

  • [15] Kulkarni, A. A., & Joshi, J. B. (2005). Bubble formation and bubble rise velocity in gas-liquid systems: A review. Industrial & Engineering Chemistry Research, 44, 5873–5931. DOI: 10.1021/ie049131p http://dx.doi.org/10.1021/ie049131pCrossrefGoogle Scholar

  • [16] Kumar, R., & Kuloor, N. R. (1970). The formation of bubbles and drops. Advances in Chemical Engineering, 8, 255–368. DOI: 10.1016/s0065-2377(08)60186-6. http://dx.doi.org/10.1016/S0065-2377(08)60186-6CrossrefGoogle Scholar

  • [17] Li, H. Z., Frank, X., Funfschilling, D., & Mouline, Y. (2001). Towards the understanding of bubble interactions and coalescence in non-Newtonian fluids: a cognitive approach. Chemical Engineering Science, 56, 6419–6425. DOI: 10.1016/s0009-2509(01)00269-x. http://dx.doi.org/10.1016/S0009-2509(01)00269-XCrossrefGoogle Scholar

  • [18] Li, H. Z., Mouline, Y., & Midoux, N. (2002). Modelling the bubble formation dynamics in non-Newtonian fluids. Chemical Engineering Science, 57, 339–346. DOI: 10.1016/s0009-2509(01)00394-3. http://dx.doi.org/10.1016/S0009-2509(01)00394-3CrossrefGoogle Scholar

  • [19] Narasinga Rao, E. V. L., Kumar, R., & Kuloor, N. R. (1966). Drop formation studies in liquid-liquid systems. Chemical Engineering Science, 21, 867–880. DOI: 10.1016/0009-2509(66)85081-9. http://dx.doi.org/10.1016/0009-2509(66)85081-9CrossrefGoogle Scholar

  • [20] Marmur, A. (2004). Adhesion and wetting in an aqueous environment: Theoretical assessment of sensitivity to the solid surface energy. Langmuir, 20, 1317–1320. DOI: 10.1021/la0359124. http://dx.doi.org/10.1021/la0359124CrossrefGoogle Scholar

  • [21] Michael, D. H. (1981). Meniscus stability. Annual Review of Fluid Mechanics, 13, 189–216. DOI: 10.1146/annurev.fl.13.010181.001201. http://dx.doi.org/10.1146/annurev.fl.13.010181.001201CrossrefGoogle Scholar

  • [22] Null, H. R., & Johnson, H. F. (1958). Drop formation in liquidliquid systems from single nozzles. AIChE Journal, 4, 273–281. DOI: 10.1002/aic.690040308. http://dx.doi.org/10.1002/aic.690040308CrossrefGoogle Scholar

  • [23] Oguz, H. N., & Prosperetti, A. (1993). Dynamics of bubble growth and detachment from a needle. Journal of Fluid Mechanics, 257, 111–145. DOI: 10.1017/s0022112093003015. http://dx.doi.org/10.1017/S0022112093003015CrossrefGoogle Scholar

  • [24] Scarano, F. (1997). Improvements in PIV image processing application to a backward facing step. Rhode-Saint-Genèse, Belgium: von Karman Institute for Fluid Dynamics. (VKI PR 1997-01) Google Scholar

  • [25] Scheele G. F., & Meister, B. J. (1968a). Drop formation at low velocities in liquid-liquid systems: Part I. Prediction of drop volume. AIChE Journal, 14, 9–15. DOI: 10.1002/aic.690140105. CrossrefGoogle Scholar

  • [26] Scheele, G. F., & Meister, B. J. (1968b). Drop formation at low velocities in liquid-liquid systems: Part II: Prediction of jetting velocity. AIChE Journal, 14, 16–19. DOI: 10.1002/aic.690140106. http://dx.doi.org/10.1002/aic.690140105CrossrefGoogle Scholar

  • [27] Tate, T. (1864). On the magnitude of a drop of liquid formed under different circumstances. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 4, 27, 176–180. Google Scholar

  • [28] Timgren, A., Trägårdh, G., & Trägårdh, C. (2008). Application of the PIV technique to measurements around and inside a forming drop in a liquid-liquid system. Experiments in Fluids, 44, 565–575. DOI: 10.1007/s00348-007-0416-x. http://dx.doi.org/10.1007/s00348-007-0416-xCrossrefWeb of ScienceGoogle Scholar

  • [29] Tsuge, H. (1986). Hydrodynamics of bubble formation from submerged orifices. In N. P. Cheremisinoff (Ed.), Encyclopedia of fluid mechanics (Vol. 3, pp. 191). Houston, TX, USA: Gulf. Google Scholar

  • [30] Zhang, X. G. (1999). Dynamics of drop formation in viscous flows. Chemical Engineering Science, 54, 1759–1774. DOI: 10.1016/s0009-2509 (99)00027-5. http://dx.doi.org/10.1016/S0009-2509(99)00027-5CrossrefGoogle Scholar

About the article

Published Online: 2012-12-27

Published in Print: 2013-03-01


Citation Information: Chemical Papers, Volume 67, Issue 3, Pages 313–325, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0277-5.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in