Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Chemical Papers

IMPACT FACTOR 2015: 1.326

SCImago Journal Rank (SJR) 2015: 0.382
Source Normalized Impact per Paper (SNIP) 2015: 0.560
Impact per Publication (IPP) 2015: 1.279

See all formats and pricing
In This Section
Volume 67, Issue 5 (May 2013)


Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles

Mohammad Abdollahi-Alibeik
  • Department of Chemistry, Yazd University, 89195-741, Yazd, Iran
  • Email:
/ Mohammad Hajihakimi
  • Department of Chemistry, Payame Noor University, P.O. BOX 19395-3697, Tehran, Iran
  • Email:
Published Online: 2013-02-14 | DOI: https://doi.org/10.2478/s11696-013-0311-2


The condensation reaction of o-phenylenediamine and arylaldehydes was investigated in the presence of nanosized sulfated zirconia (SO42−-ZrO2) as the solid acid catalyst. Nanosized SO42−-ZrO2 was prepared and characterized by the XRD, FT-IR, and SEM techniques. The results confirm good stabilization of the tetragonal phase of zirconia in the presence of sulfate. Reusability experiments showed partial deactivation of the catalyst after each run; good reusability can be achieved after calcinations of the recovered catalyst before its reuse.

Keywords: sulfated zirconia; nanoparticle; solid acid; catalyst; benzimidazole; reusability

  • [1] Abdollahi-Alibeik, M., Mohammadpoor-Baltork, I., Zaghaghi, Z., & Yousefi, B. H. (2008). Efficient synthesis of 1,5-benzodiazepines catalyzed by silica supported 12-tungstophosphoric acid. Catalysis Communications, 9, 2496–2502. DOI:10.1016/j.catcom.2008.07.004. http://dx.doi.org/10.1016/j.catcom.2008.07.004 [Crossref]

  • [2] Abdollahi-Alibeik, M., & Zaghaghi, Z. (2009). 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Chemical Papers, 63, 97–101. DOI: 10.2478/s11696-008-0084-1. http://dx.doi.org/10.2478/s11696-008-0084-1 [Web of Science] [Crossref]

  • [3] Abdollahi-Alibeik, M., & Moosavifard, M. (2010). FeCl3-doped polyaniline nanoparticles as reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles. Synthetic Communications, 40, 2686–2695. DOI: 10.1080/00397910903318658. http://dx.doi.org/10.1080/00397910903318658 [Web of Science] [Crossref]

  • [4] Abdollahi-Alibeik, M., & Pouriayevali, M. (2011). 12-Tungstophosphoric acid supported on nano sized MCM-41 as an efficient and reusable solid acid catalyst for the three-component imino Diels-Alder reaction. Reaction Kinetics, Mechanisms and Catalysis, 104, 235–248. DOI: 10.1007/s11144-011-0345-9. http://dx.doi.org/10.1007/s11144-011-0345-9 [Crossref]

  • [5] Abdollahi-Alibeik, M., & Heidari-Torkabad, E. (2012). H3PW12 O40/MCM-41 nanoparticles as efficient and reusable solid acid catalyst for the synthesis of quinoxalines. Comptes Rendus Chimie, 15, 517–523. DOI:10.1016/j.crci.2012.04.005. http://dx.doi.org/10.1016/j.crci.2012.04.005 [Crossref]

  • [6] Abdollahi-Alibeik, M., & Pouriayevali, M. (2012). Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catalysis Communications, 22, 13–18. DOI:10.1016/j.catcom.2012.02.004. http://dx.doi.org/10.1016/j.catcom.2012.02.004 [Web of Science] [Crossref]

  • [7] Adam, F., Batagarawa, M., Hello, K., & Al-Juaid, S. (2012). One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer. Chemical Papers, 66, 1048–1058. DOI: 10.2478/s11696-012-0203-x. http://dx.doi.org/10.2478/s11696-012-0203-x [Crossref]

  • [8] Chen, G. F., & Dong, X. Y. (2012). Facile and selective synthesis of 2-substituted benzimidazoles catalyzed by FeCl3/Al2O3. E-Journal of Chemistry, 9, 289–293. DOI:10.1155/2012/197174. http://dx.doi.org/10.1155/2012/197174 [Crossref]

  • [9] Denny, W. A., Rewcastle, G. W., & Baguley, B. C. (1990). Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. Journal of Medicinal Chemistry, 33, 814–819. DOI: 10.1021/jm00164a054. http://dx.doi.org/10.1021/jm00164a054 [Crossref]

  • [10] Dhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52, 69–73. DOI:10.1016/j.tetlet.2010.10.146. http://dx.doi.org/10.1016/j.tetlet.2010.10.146 [Crossref] [Web of Science]

  • [11] Du, L. H., & Wang, Y. G. (2007). A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant. Synthesis, 2007, 675–678. DOI:10.1055/s-2007-965922. http://dx.doi.org/10.1055/s-2007-965922 [Crossref]

  • [12] Dudd, L. M., Venardou, E., Garcia-Verdugo, E., Licence, P., Blake, A. J., Wilson, C., & Poliakoff, M. (2003). Synthesis of benzimidazoles in high-temperature water. Green Chemistry, 5, 187–192. DOI: 10.1039/b212394k. http://dx.doi.org/10.1039/b212394k [Crossref]

  • [13] Fekner, T., Gallucci, J., & Chan, M. K. (2004). Ruffling-induced chirality: Synthesis, metalation, and optical resolution of highly nonplanar, cyclic, benzimidazole-based ligands. Journal of the American Chemical Society, 126, 223–236. DOI: 10.1021/ja030196d. http://dx.doi.org/10.1021/ja030196d [Crossref]

  • [14] Fonseca, T., Gigante, B., & Gilchrist, T. L. (2001). A short synthesis of phenanthro[2,3-d]imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles. Tetrahedron, 57, 1793–1799. DOI: 10.1016/s0040-4020(00)01158-3. [Crossref]

  • [15] Hasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T., & Yanagi, K. (1999). Reductive transformation of α, β-epoxy ketones and other compounds promoted through photoinduced electron transfer processes with 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI). Tetrahedron, 55, 12957–12968. DOI: 10.1016/s0040-4020(99)00804-2. http://dx.doi.org/10.1016/S0040-4020(99)00804-2 [Crossref]

  • [16] Hein, D. W., Alheim, R. J., & Leavitt, J. J. (1957). The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles. Journal of the American Chemical Society, 79, 427–429. DOI: 10.1021/ja01559a053. http://dx.doi.org/10.1021/ja01559a053 [Crossref]

  • [17] Karami, B., Khodabakhshi, S., & Haghighijou, Z. (2012). Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles. Chemical Papers, 66, 684–690. DOI: 10.2478/s11696-012-0152-4. http://dx.doi.org/10.2478/s11696-012-0152-4 [Crossref]

  • [18] Katritzky, A. R., Aslan, D. C., & Oniciu, D. C. (1998). Stereoselective synthesis of 2-(α-hydroxyalkyl)benzimidazoles. Tetrahedron: Asymmetry, 9, 2245–2251. DOI: 10.1016/s0957-4166(98)00202-x. http://dx.doi.org/10.1016/S0957-4166(98)00202-X [Crossref]

  • [19] Lopez, S. E., Restrepo, J., Perez, B., Ortiz, S., & Salazar, J. (2009). One pot microwave promoted synthesis of 2-aryl-1H-benzimidazoles using sodium hydrogen sulfite. Bulletin of the Korean Chemical Society, 30, 1628–1630. DOI:10.5012/bkcs.2009.30.7.1628. http://dx.doi.org/10.5012/bkcs.2009.30.7.1628 [Crossref]

  • [20] Mohammadpoor-Baltork, I., Khosropour, A. R., & Hojati, S. F. (2007). ZrOCl2·8H2O as an efficient, environmentally friendly and reusable catalyst for synthesis of benzoxazoles, benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines under solvent-free conditions. Catalysis Communications, 8, 1865–1870. DOI:10.1016/j.catcom.2007.02.020. http://dx.doi.org/10.1016/j.catcom.2007.02.020 [Web of Science] [Crossref]

  • [21] Nadaf, R. N., Siddiqui, S. A., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2004). Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. Journal of Molecular Catalysis A: Chemical, 214, 155–160. DOI:10.1016/j.molcata.2003.10.064. http://dx.doi.org/10.1016/j.molcata.2003.10.064 [Crossref]

  • [22] Negrón, G. E., Palacios, L. N., Angeles, D., Lomas, L., & Gaviñno, R. (2005). A mild and efficient method for the chemoselective synthesis of acylals from aromatic aldehydes and their deprotections catalyzed by sulfated zirconia. Journal of the Brazilian Chemical Society, 16, 490–494. DOI:10.1590/s0103-50532005000300025. http://dx.doi.org/10.1590/S0103-50532005000300025 [Crossref]

  • [23] Ponnala, S., & Prasad Sahu, D. (2006). Iodine-mediated synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 1,3,5-trisubstituted pyrazoles. Synthetic Communications, 36, 2189–2194. DOI: 10.1080/00397910600638879. http://dx.doi.org/10.1080/00397910600638879 [Crossref]

  • [24] Reddy, B. M., & Patil, M. K. (2009). Organic syntheses and transformations catalyzed by sulfated zirconia. Chemical Reviews, 109, 2185–2208. DOI: 10.1021/cr900008m. http://dx.doi.org/10.1021/cr900008m [Web of Science] [Crossref]

  • [25] Rekha, M., Hamza, A., Venugopal, B. R., & Nagaraju, N. (2012). Synthesis of 2-substituted benzimidazoles and 1,5-disubstituted benzodiazepines on alumina and zirconia catalysts. Chinese Journal of Catalysis, 33, 439–446. DOI:10.1016/s1872-2067(11)60338-0. http://dx.doi.org/10.1016/S1872-2067(11)60338-0 [Crossref] [Web of Science]

  • [26] Song, X. Q., Vig, B. S., Lorenzi, P. L., Drach, J. C., Townsend, L. B., & Amidon, G. L. (2005). Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter. Journal of Medicinal Chemistry, 48, 1274–1277. DOI: 10.1021/jm049450i. http://dx.doi.org/10.1021/jm049450i [Crossref]

  • [27] Srinivas, U., Srinivas, Ch., Narender, P., Rao, V. J., & Palaniappan, S. (2007). Polyaniline-sulfate salt as an efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines and 2-phenyl benzimidazoles. Catalysis Communications, 8, 107–110. DOI:10.1016/j.catcom.2006.05.022. http://dx.doi.org/10.1016/j.catcom.2006.05.022 [Crossref] [Web of Science]

  • [28] Tyagi, B., Mishra, M. K., & Jasra, R. V. (2007). Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. Journal of Molecular Catalysis A: Chemical, 276, 47–56. DOI:10.1016/j.molcata.2007.06.003. http://dx.doi.org/10.1016/j.molcata.2007.06.003 [Crossref] [Web of Science]

  • [29] Tyagi, B., Mishra, M. K., & Jasra, R. V. (2009). Solvent free synthesis of 7-isopropyl-1,1-dimethyltetralin by the rearrangement of longifolene using nano-crystalline sulfated zirconia catalyst. Journal of Molecular Catalysis A: Chemical, 301, 67–78. DOI:10.1016/j.molcata.2008.11.011. http://dx.doi.org/10.1016/j.molcata.2008.11.011 [Web of Science] [Crossref]

  • [30] Valdez, J., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Navarrete-Vázquez, G., Tapia, A., Cortés, R., Hernándey, M., & Castillo, R. (2002). Synthesis and antiparasitic activity of 1H-benzimidazole derivatives. Bioorganic & Medicinal Chemistry Letters, 12, 2221–2224. DOI: 10.1016/s0960-894x(02)00346-3. http://dx.doi.org/10.1016/S0960-894X(02)00346-3 [Crossref]

  • [31] Varala, R., Nasreen, A., Enugala, R., & Adapa, S. R. (2007). l-Proline catalyzed selective synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles. Tetrahedron Letters, 48, 69–72. DOI:10.1016/j.tetlet.2006.11.010. http://dx.doi.org/10.1016/j.tetlet.2006.11.010 [Crossref]

  • [32] Wolfson, A., Madhusudhan, R., Shapira-Tchelet, A., & Landau, M. (2009). Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation. Chemical Papers, 63, 291–297. DOI: 10.2478/s11696-009-0018-6. http://dx.doi.org/10.2478/s11696-009-0018-6 [Web of Science] [Crossref]

  • [33] Yamaguchi, T. (1994). Application of ZrO2 as a catalyst and a catalyst support. Catalysis Today, 20, 199–217. DOI: 10.1016/0920-5861(94)80003-0. http://dx.doi.org/10.1016/0920-5861(94)80003-0

  • [34] Yu, S. J., Jiang, P. P., Dong, Y. M., Zhang, P. B., Zhang, Y., & Zhang, W. J. (2012). Hydrothermal synthesis of nanosized sulfated zirconia as an efficient and reusable catalyst for esterification of acetic acid with n-butanol. Bulletin of the Korean Chemical Society, 33, 524–528. DOI:10.5012/bkcs.2012.33.2.524. http://dx.doi.org/10.5012/bkcs.2012.33.2.524 [Crossref]

About the article

Published Online: 2013-02-14

Published in Print: 2013-05-01

Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0311-2. Export Citation

Comments (0)

Please log in or register to comment.
Log in