Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

See all formats and pricing
More options …
Volume 67, Issue 7 (Jul 2013)


Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane

Shahriar Shadabi
  • Department of Chemistry, Lorestan University, P.O. Box 465, Khoramabad, Iran
  • Email:
/ Ali Ghiasvand
  • Department of Chemistry, Lorestan University, P.O. Box 465, Khoramabad, Iran
  • Razi Medicinal Herbs Research Center, Lorestan University of Medical Science, P.O. Box 441, Khoramabad, Iran
  • Email:
/ Payman Hashemi
  • Department of Chemistry, Lorestan University, P.O. Box 465, Khoramabad, Iran
  • Email:
Published Online: 2013-04-12 | DOI: https://doi.org/10.2478/s11696-013-0373-1


Olive oil mill wastewater (OMWW) is very rich in phenolic compounds especially the key compounds of caffeic acid (CA), hydroxytyrosol (HTY), and tyrosol (TY). Therefore, the development of new and effective analytical and industrial methods for the separation and concentration of these valuable compounds has attracted great attention in the last decades. In this study, a selective transport and separation method for CA, HTY, and TY from OMWW samples, obtained from different olive orchards, using a new bulk liquid membrane (BLM) procedure was developed. Various factors influencing the transport efficiency such as pH of the source and receiving phases, nature and volume of the organic membrane, stirring rate, and transport time were investigated and optimized. Under optimal experimental conditions, the transport efficiencies of CA, HTY, and TY from the OMWW samples of 90.1 %, 28.4 %, and 34.9 % were obtained, respectively. Relative standard deviations (RSDs, n = 7) were found to be 4.1 %, 3.8 %, and 3.0 % and the limits of detection (LODs) obtained were 0.001 mg L−1, 0.011 mg L−1, and 0.008 mg L−1, for CA, HTY, and TY, respectively.

Keywords: bulk liquid membrane; HPLC; OMWW; caffeic acid; hydroxytyrosol; tyrosol

  • [1] Ben Sassi, A., Boularbah, A., Jaouad, A., Walker, G., & Boussaid, A. (2006). A comparison of olive oil mill wastewaters (OMW) from three different processes in Morocco. Process Biochemistry, 41, 74–78. DOI: 10.1016/j.procbio.2005.03.074. http://dx.doi.org/10.1016/j.procbio.2005.03.074CrossrefGoogle Scholar

  • [2] Bertin, L., Ferri, F., Marchetti, L., & Fabio, F. (2010). Valorization of olive mill wastewater through liquid-solid extraction of the phenolic fraction. Journal of Biotechnology, 150(Supplement), 195. DOI: 10.1016/j.jbiotec.2010.08.508. http://dx.doi.org/10.1016/j.jbiotec.2010.08.508Web of ScienceCrossrefGoogle Scholar

  • [3] De Leonardis, A., Macciola, V., Lembo, G., Aretini, A., & Nag, A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chemistry, 100, 998–1004. DOI: 10.1016/j.foodchem.2005.10.057. http://dx.doi.org/10.1016/j.foodchem.2005.10.057CrossrefWeb of ScienceGoogle Scholar

  • [4] DellaGreca, M., Previtera, L., Temussi, F., & Zarrelli, A. (2004). Low-molecular-weight components of olive oil mill waste-waters. Phytochemical Analysis, 15, 184–188. DOI: 10.1002/pca.766. http://dx.doi.org/10.1002/pca.766CrossrefGoogle Scholar

  • [5] De Marco, E., Savarese, M., Paduano, A., & Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chemistry, 104, 858–867. DOI: 10.1016/j.foodchem.2006.10.005. http://dx.doi.org/10.1016/j.foodchem.2006.10.005Web of ScienceCrossrefGoogle Scholar

  • [6] Fki, I., Allouche, N., & Sayadi, S. (2005). The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chemistry, 93, 197–204. DOI: 10.1016/j.foodchem.2004.09.014. http://dx.doi.org/10.1016/j.foodchem.2004.09.014CrossrefGoogle Scholar

  • [7] Isidori, M., Lavorgna, M., Nardelli, A., & Parrella, A. (2005). Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. Journal of Agricultural and Food Chemistry, 53, 8414–8417. DOI: 10.1021/jf0511695. http://dx.doi.org/10.1021/jf0511695CrossrefGoogle Scholar

  • [8] Jönsson, J. Å., & Mathiasson, L. (1999). Liquid membrane extraction in analytical sample preparation: I. Principles. TrAC Trends in Analytical Chemistry, 18, 318–325. DOI: 10.1016/s0165-9936(99)00102-8. http://dx.doi.org/10.1016/S0165-9936(99)00102-8CrossrefGoogle Scholar

  • [9] Khoufi, S., Aloui, F., & Sayadi, S. (2008). Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. Journal of Hazardous Materials, 151, 531–539. DOI: 10.1016/j.jhazmat.2007.06.017. http://dx.doi.org/10.1016/j.jhazmat.2007.06.017CrossrefWeb of ScienceGoogle Scholar

  • [10] Knutsson, M., Lundh, J., Mathiasson, L., Jönsson, J. Å., & Sundin, P. (1996). Supported liquid membranes for the extraction of phenolic acids from circulating nutrient solutions. Analytical Letters, 29, 1619–1635. DOI: 10.1080/00032719608001509. http://dx.doi.org/10.1080/00032719608001509CrossrefGoogle Scholar

  • [11] Lafka, T. I., Lazou, A. E., Sinanoglou, V. J., & Lazos, E. S. (2011). Phenolic and antioxidant potential of olive oil mill wastes. Food Chemistry, 125, 92–98. DOI: 10.1016/j.foodchem.2010.08.041. http://dx.doi.org/10.1016/j.foodchem.2010.08.041CrossrefGoogle Scholar

  • [12] Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J. C., Lorquin, J., Delattre, M., Simon, J. L., Asther, M., & Labat, M. (2001). Simple phenolic content in olive oil residues as a function of extraction systems. Food Chemistry, 75, 501–507. DOI: 10.1016/s0308-8146 (01)00227-8. http://dx.doi.org/10.1016/S0308-8146(01)00227-8CrossrefGoogle Scholar

  • [13] López-López, J. A., Mendiguchía, C., Pinto, J. J., & Moreno, C. (2010). Liquid membranes for quantification and speciation of trace metals in natural waters. TrAC Trends in Analytical Chemistry, 29, 645–653. DOI: 10.1016/j.trac.2010.01.007. http://dx.doi.org/10.1016/j.trac.2010.01.007CrossrefWeb of ScienceGoogle Scholar

  • [14] Luque, M., Luque-Pérez, E., Ríos, A., & Valcárcel, M. (2000). Supported liquid membranes for the determination of vanillin in food samples with amperometric detection. Analytica Chimica Acta, 410, 127–134. DOI: 10.1016/s0003-2670(00)00737-6. http://dx.doi.org/10.1016/S0003-2670(00)00737-6CrossrefGoogle Scholar

  • [15] Madaeni, S. S., Jamali, Z., & Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier. Separation and Purification Technology, 81, 116–123. DOI: 10.1016/j.seppur.2011.07.004. http://dx.doi.org/10.1016/j.seppur.2011.07.004CrossrefWeb of ScienceGoogle Scholar

  • [16] Mendiguchía, C., García-Vargas, M., & Moreno, C. (2008). Screening of dissolved heavy metals (Cu, Zn, Mn, Al, Cd, Ni, Pb) in seawater by a liquid-membrane-ICP-MS approach. Analytical and Bioanalytical Chemistry, 391, 773–778. DOI: 10.1007/s00216-008-1907-1. http://dx.doi.org/10.1007/s00216-008-1907-1CrossrefWeb of ScienceGoogle Scholar

  • [17] Minhas, F. T., Memon, S., & Bhanger, M. I. (2010). Transport of Hg(II) through bulk liquid membrane containing calix[4]arene thioalkyl derivative as a carrier. Desalination, 262, 215–220. DOI: 10.1016/j.desal.2010.06.014. http://dx.doi.org/10.1016/j.desal.2010.06.014CrossrefWeb of ScienceGoogle Scholar

  • [18] Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C., & Vincieri, F. F. (2001). Polyphenolic content in olive oil waste waters and related olive samples. Journal of Agricultural and Food Chemistry, 49, 3509–3514. DOI: 10.1021/jf000972q. http://dx.doi.org/10.1021/jf000972qCrossrefGoogle Scholar

  • [19] Nezhadali, A., & Rabani, N. (2011). Competitive bulk liquid membrane transport of Co(II), Ni(II), Zn(II), Cd(II), Ag(I), Cu(II), and Mn(II), cations using 2,2′-dithio(bis)benzothiazole as carrier. Chinese Chemical Letters, 22, 88–92. DOI: 10.1016/j.cclet.2010.06.018. http://dx.doi.org/10.1016/j.cclet.2010.06.018Web of ScienceCrossrefGoogle Scholar

  • [20] Norberg, J., Emnéus, J., Jönsson, J. Å., Mathiasson, L., Burestedt, E., Knutsson, M., & Marko-Varga, G. (1997). Online supported liquid membrane-liquid chromatography with a phenol oxidase-based biosensor as a selective detection unit for the determination of phenols in blood plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 701, 39–46. DOI: 10.1016/s0378-4347(97)00348-4. http://dx.doi.org/10.1016/S0378-4347(97)00348-4CrossrefGoogle Scholar

  • [21] Reddy, T. R., Ramkumar, J., Chandramouleeswaran, S., & Reddy, A. V. R. (2010). Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier. Journal of Membrane Science, 351, 11–15. DOI: 10.1016/j.memsci.2010.01.021. http://dx.doi.org/10.1016/j.memsci.2010.01.021Web of ScienceCrossrefGoogle Scholar

  • [22] Reichardt, C., & Welton, T. (2011). Solvents and solvent effects in organic chemistry (4th ed.). Weinheim, Germany: VCH. DOI: 10.1002/9783527632220. CrossrefGoogle Scholar

  • [23] Rydberg, J., Musikas, C., & Choppin, G. R. (1992). Principles and practices of solvent extraction. New York, NY, USA: Marcel Dekker. Google Scholar

  • [24] San Román, M. F., Bringas, E., Ibañez, R., & Ortiz, I. (2010). Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology and Biotechnology, 85, 2–10. DOI: 10.1002/jctb.2252. http://dx.doi.org/10.1002/jctb.2252Web of ScienceCrossrefGoogle Scholar

  • [25] Shamsipur, M., Davarkhah, R., & Khanchi, A. R. (2010). Facilitated transport of uranium(VI) across a bulk liquid membrane containing thenoyltrifluoroacetone in the presence of crown ethers as synergistic agents. Separation and Purification Technology, 71, 63–69. DOI: 10.1016/j.seppur.2009.11.003. http://dx.doi.org/10.1016/j.seppur.2009.11.003Web of ScienceCrossrefGoogle Scholar

  • [26] Singh, R., Mehta, R., & Kumar, V. (2011). Simultaneous removal of copper, nickel and zinc metal ions using bulk liquid membrane system. Desalination, 272, 170–173. DOI: 10.1016/j.desal.2011.01.009. http://dx.doi.org/10.1016/j.desal.2011.01.009CrossrefGoogle Scholar

  • [27] Zafra, A., Juárez, M. J. B., Blanc, R., Navalón, A., González, J., & Vílchez, J. L. (2006). Determination of polyphenolic compounds in wastewater olive oil by gas chromatography-mass spectrometry. Talanta, 70, 213–218. DOI: 10.1016/j.talanta.2005.12.038. http://dx.doi.org/10.1016/j.talanta.2005.12.038CrossrefGoogle Scholar

About the article

Published Online: 2013-04-12

Published in Print: 2013-07-01

Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0373-1.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in