Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers


IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 67, Issue 8 (Aug 2013)

Issues

Conducting polymer-silver composites

Jaroslav Stejskal
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-03 | DOI: https://doi.org/10.2478/s11696-012-0304-6

Abstract

Preparations of hybrid composites composed of two conducting components, a conducting polymer and silver, are reviewed. They are produced mainly by the oxidation of aniline or pyrrole with silver ions. In another approach, polyaniline or polypyrrole are used for the reduction of silver ions to metallic silver. Other synthetic approaches are also reviewed. Products of oxidation of aniline derivatives, including phenylenediamines, are considered. Morphology of both the conducting polymers and the silver in composites displays a rich variety. Conductivity of the composites seldom exceeds 1000 S cm−1 and seems to be controlled by percolation. Interfacial effects are also discussed. Potential applications of hybrid composites are outlined; they are likely to extend especially to conducting inks, printed electronics, noble-metal recovery, antimicrobial materials, catalysts, and sensors.

Keywords: polyaniline; polypyrrole; poly(o-phenylenediamine); poly(p-phenylenediamine); silver; silver nanoparticles; hybrid composites; conductivity

  • [1] Afzal, A. B., Akhtar, M. J., Nadeem, M., Ahmad, M., Hassan, M. M., Yasin, T., & Mehmood, M. (2009). Structural and electrical properties of polyaniline/silver nanocomposites. Journal of Physics D: Applied Physics, 42, 015411. DOI: 10.1088/0022-3727/42/1/015411. http://dx.doi.org/10.1088/0022-3727/42/1/015411CrossrefGoogle Scholar

  • [2] Afzal, A. B., & Akhtar, M. J. (2010). Effect of inorganic silver nanoparticles on structural and electrical properties of polyaniline/PVC blends. Journal of Inorganic and Organometallic Polymers and Materials, 20, 783–792. DOI: 10.1007/s10904-010-9405-2. http://dx.doi.org/10.1007/s10904-010-9405-2CrossrefGoogle Scholar

  • [3] Afzal, A. B., & Akhtar, M. J. (2011). Investigation of ageing effects on the electrical properties of polayniline/silver nanocomposites. Chinese Physics B, 20, 058102. DOI: 10.1088/1674-1056/20/5/058102. http://dx.doi.org/10.1088/1674-1056/20/5/058102CrossrefGoogle Scholar

  • [4] Afzal, A. B., & Akhtar, M. J. (2012). Effects of silver nanoparticles on thermal properties of DBSA-doped polyaniline/PVC blends. Iranian Polymer Journal, 21, 489–496. DOI: 10.1007/s13726-012-0053-y. http://dx.doi.org/10.1007/s13726-012-0053-yCrossrefGoogle Scholar

  • [5] Alam, F., Ansari, S. A., Khan, W., Khan, M. E., & Naqvi, A. H. (2012). Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Functional Materials Letters, 5, 1250026. DOI: 10.1142/s1793604712500269. http://dx.doi.org/10.1142/S1793604712500269CrossrefGoogle Scholar

  • [6] Alqudami, A., Annapoorni, S., Sen, P., & Rawat, R. S. (2007). The incorporation of silver nanoparticles into polypyrrole: Conductivity changes. Synthetic Metals, 157, 53–59. DOI: 10.1016/j.synthmet.2006.12.006. http://dx.doi.org/10.1016/j.synthmet.2006.12.006CrossrefGoogle Scholar

  • [7] Ansari, R., & Delavar, A. F. (2008). Sorption of silver ion from aqueous solutions using conducting electroactive polymers. Journal of the Iranian Chemical Society, 5, 657–668. DOI: 10.1007/bf03246147. http://dx.doi.org/10.1007/BF03246147CrossrefGoogle Scholar

  • [8] Atmeh, M., & Alcock-Earley, B. E. (2011). A conducting polymer/Ag nanoparticle composite as a nitrate sensor. Journal of Applied Electrochemistry, 41, 1341–1347. DOI: 10.1007/s10800-011-0354-4. http://dx.doi.org/10.1007/s10800-011-0354-4CrossrefGoogle Scholar

  • [9] Au, K. M., Lu, Z. H., Matcher, S. J., & Armes, S. P. (2011). Polypyrrole nanoparticles: A potential optical coherence tomography contrast agent for cancer imaging. Advanced Materials, 23, 5792–5795. DOI: 10.1002/adma.201103190. http://dx.doi.org/10.1002/adma.201103190CrossrefGoogle Scholar

  • [10] Ayad, M. M., & Zaki, E. (2009). Synthesis and characterization of silver-polypyrrole film composite. Applied Surface Science, 256, 787–791. DOI: 10.1016/j.apsusc.2009.08.060. http://dx.doi.org/10.1016/j.apsusc.2009.08.060CrossrefGoogle Scholar

  • [11] Ayad, M. M., Prastomo, N., Matsuda, A., & Stejskal, J. (2010). Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance. Synthetic Metals, 160, 42–46. DOI: 10.1016/j.synthmet.2009.09.030. http://dx.doi.org/10.1016/j.synthmet.2009.09.030CrossrefGoogle Scholar

  • [12] Baibarac, M., Mihut, L., Louarn, G., Mevellec, J. Y., Wery, J., Lefrant, S., & Baltog, I. (1999). Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. Journal of Raman Spectroscopy, 30, 1105–1113. DOI: 10.1002/(SICI)1097-4555(199912)30:12〈1105::AID-JRS507〉3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1097-4555(199912)30:12<1105::AID-JRS507>3.0.CO;2-3CrossrefGoogle Scholar

  • [13] Barkade, S. S., Naik, J. B., & Sonawane, S. H. (2011). Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapour sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378, 94–98. DOI: 10.1016/j.colsurfa.2011.02. 002. http://dx.doi.org/10.1016/j.colsurfa.2011.02.002CrossrefGoogle Scholar

  • [14] Bashyam, R., & Zelenay, P. (2006). A class of non-precious metal composite catalysts for fuel cells. Nature, 443, 63–66. DOI: 10.1038/nature05118. http://dx.doi.org/10.1038/nature05118CrossrefGoogle Scholar

  • [15] Bedre, M. D., Basavaraja, S., Salwe, B. D., Shivakumar, V., Arunkumar, L., & Venkataraman, A. (2009). Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polymer Composites, 30, 1668–1677. DOI: 10.1002/pc.20740. http://dx.doi.org/10.1002/pc.20740CrossrefGoogle Scholar

  • [16] Blinova, N. V., Stejskal, J., Trchová, M., Ćirić-Marjanović, G., & Sapurina, I. (2007a). Polymerization of aniline on polyaniline membranes. Journal of Physical Chemistry B, 111, 2440–2448. DOI: 10.1021/jp067370f. http://dx.doi.org/10.1021/jp067370fCrossrefGoogle Scholar

  • [17] Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007b). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331–2341. DOI: 10.1016/j.eurpolymj.2007.03.045. http://dx.doi.org/10.1016/j.eurpolymj.2007.03.045CrossrefGoogle Scholar

  • [18] Blinova, N. V., Stejskal, J., Trchová, M., Sapurina, I., & Ćirić-Marjanović, G. (2009). The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer, 50, 50–56. DOI: 10.1016/j.polymer.2008.10.040. http://dx.doi.org/10.1016/j.polymer.2008.10.040CrossrefGoogle Scholar

  • [19] Blinova, N. V., Bober, P., Hromádková, J., Trchová, M., Stejskal, J., & Prokeš, J. (2010). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International, 59, 437–446. DOI: 10.1002/pi.2718. http://dx.doi.org/10.1002/pi.2718CrossrefGoogle Scholar

  • [20] Bober, P., Stejskal, J., Trchová, M., Hromádková, J., & Prokeš, J. (2010a). Polyaniline-coated silver nanowires. Reactive & Functional Polymers, 70, 656–662. DOI: 10.1016/j.reactfunctpolym.2010.05.009. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.05.009CrossrefGoogle Scholar

  • [21] Bober, P., Stejskal, J., Trchová, M., Prokeš, J., & Sapurina, I. (2010b). Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites. Macromolecules, 43, 10406–10413. DOI: 10.1021/ma101474j. http://dx.doi.org/10.1021/ma101474jCrossrefGoogle Scholar

  • [22] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011a). Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 52, 5947–5952. DOI: 10.1016/j.polymer.2011.10.025. http://dx.doi.org/10.1016/j.polymer.2011.10.025CrossrefGoogle Scholar

  • [23] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011b). The preparation of conducting polyaniline-silver and poly (p-phenylenediamine)-silver nanocomposites in liquid and frozen reaction mixtures. Journal of Solid State Electrochemistry, 15, 2361–2368. DOI: 10.1007/s10008-011-1414-8. http://dx.doi.org/10.1007/s10008-011-1414-8CrossrefGoogle Scholar

  • [24] Bober, P., Trchová, M., Prokeš, J., Varga, M., & Stejskal, J. (2011c). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta, 56, 3580–3585. DOI: 10.1016/j.electacta.2010.08.041. http://dx.doi.org/10.1016/j.electacta.2010.08.041CrossrefGoogle Scholar

  • [25] Borthakur, L. J., Sharma, S., & Dolui, S. K. (2011). Studies on Ag/polypyrrole composite deposited on the surface of styrene-methyl acrylate copolymer microparticles and their electrical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 22, 949–958. DOI: 10.1007/s10854-010-0242-4. http://dx.doi.org/10.1007/s10854-010-0242-4CrossrefGoogle Scholar

  • [26] Bouazza, S., Alonzo, V., & Hauchard, D. (2009). Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material. Synthetic Metals, 159, 1612–1619. DOI: 10.1016/j.synthmet.2009.04.025. http://dx.doi.org/10.1016/j.synthmet.2009.04.025CrossrefGoogle Scholar

  • [27] Cao, Y., Smith, P., & Heeger, A. J. (1993). Counter-ion induced processibility of conducting polyaniline. Synthetic Metals, 57, 3514–3519. DOI: 10.1016/0379-6779(93)90468-c. http://dx.doi.org/10.1016/0379-6779(93)90468-CCrossrefGoogle Scholar

  • [28] Chang, S. J., Chen, K., Hua, Q., Ma, Y. S., & Huang, W. X. (2011). Evidence for the growth mechanism of silver nanocubes and nanowires. Journal of Physical Chemistry C, 115, 7979–7986. DOI: 10.1021/jp2010088. http://dx.doi.org/10.1021/jp2010088CrossrefGoogle Scholar

  • [29] Chang, G.H., Luo, Y. L., Lu, W. B., Qin, X.Y., Asiri, A.M., Al-Youbi, A. O., & Sun, X. P. (2012a). Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catalysis Science & Technology, 2, 800–806. DOI: 10.1039/c2cy00454b. http://dx.doi.org/10.1039/c2cy00454bCrossrefGoogle Scholar

  • [30] Chang, M. C., Kim, T. J., Park, H. W., Kang, M. J., Reichmanis, E., & Yoon, H. S. (2012b). Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Applied Materials & Interfaces, 4, 4357–4365. DOI: 10.1021/am3009967. http://dx.doi.org/10.1021/am3009967CrossrefGoogle Scholar

  • [31] Chao, D. M., Cui, L., Zhang, J. F., Liu, X. C., Li, Y. X., Zhang, W. J., & Wang, C. (2009). Preparation of oligoaniline derivative/polyvinylpyrrolidone nanofibers containing silver nanoparticles. Synthetic Metals, 159, 537–540. DOI: 10.1016/j.synthmet.2008.11.013. http://dx.doi.org/10.1016/j.synthmet.2008.11.013CrossrefGoogle Scholar

  • [32] Chatterjee, S., Garai, A., & Nandi, A. K. (2011). Mechanism of polypyrrole and silver nanorod formation in lauric acidcetyl trimethyl ammonium bromide coacervate gel template: Physical and conductivity properties. Synthetic Metals, 161, 62–71. DOI: 10.1016/j.synthmet.2010.10.035. http://dx.doi.org/10.1016/j.synthmet.2010.10.035CrossrefGoogle Scholar

  • [33] Chen, A. H., Wang, H. Q., & Li, X. Y. (2005a). One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications, 2005, 1863–1864. DOI: 10.1039/b417744d. http://dx.doi.org/10.1039/b417744dCrossrefGoogle Scholar

  • [34] Chen, A. H., Kamata, K., Nakagawa, M., Iyoda, T., Wang, H. Q., & Li, X. Y. (2005b). Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). Journal of Physical Chemistry B, 109, 18283–18288. DOI: 10.1021/jp053247x. http://dx.doi.org/10.1021/jp053247xCrossrefGoogle Scholar

  • [35] Chen, A. H., Xie, H. X., Wang, H. Q., Li, H. Y., & Li, X. Y. (2006). Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals, 156, 346–350. DOI: 10.1016/j.synthmet.2005.12.017. http://dx.doi.org/10.1016/j.synthmet.2005.12.017CrossrefGoogle Scholar

  • [36] Chen, R., Zhao, S. Z., Han, G. Y., & Dong, J. H. (2008). Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Materials Letters, 62, 4031–4034. DOI: 10.1016/j.matlet.2008.05.054. http://dx.doi.org/10.1016/j.matlet.2008.05.054CrossrefGoogle Scholar

  • [37] Chen, H. M., & Liu, R. S. (2011a). Architecture of metallic nanostructures: Synthesis strategy and specific applications. Journal of Physical Chemistry C, 115, 3513–3527. DOI: 10.1021/jp108403r. http://dx.doi.org/10.1021/jp108403rCrossrefGoogle Scholar

  • [38] Chen, F., & Liu, P. (2011b). Conducting polyaniline nanoparticles and their dispersion for waterborn corrosion protection coating. ACS Applied Materials & Interfaces, 3, 2694–2702. DOI: 10.1021/am200488m. http://dx.doi.org/10.1021/am200488mCrossrefGoogle Scholar

  • [39] Cheng, D. M., Xia, H. B., & Cahn, H. S. O. (2006). Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates. Nanotechnology, 17, 1661–1667. DOI: 10.1088/0957-4484/17/6/021. http://dx.doi.org/10.1088/0957-4484/17/6/021CrossrefGoogle Scholar

  • [40] Cheng, Q. L., Pavlinek, V., He, Y., Yan, Y. F., Li, C. Z., & Saha, P. (2011). Template-free synthesis of hollow poly(oanisidine) microspheres and their electrorheological characteristics. Smart Materials and Structures, 20, 065014. DOI: 10.1088/0964-1726/20/6/065014. http://dx.doi.org/10.1088/0964-1726/20/6/065014CrossrefGoogle Scholar

  • [41] Chi, K. W., Song, Y. H., Cha, E. H., Jin, S. H., & Lee, C. W. (2010). Reversible colorimetric changes of a nanoporous polyaniline conducting particles system for sensing metal ions, Synthetic Metals, 160, 946–949. DOI: 10.1016/j.synthmet.2010.02.005. http://dx.doi.org/10.1016/j.synthmet.2010.02.005CrossrefGoogle Scholar

  • [42] Choi, M. J., & Jang, J. S. (2008). Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. Journal of Colloid and Interface Science, 325, 287–289. DOI: 10.1016/j.jcis.2008.05.047. http://dx.doi.org/10.1016/j.jcis.2008.05.047CrossrefGoogle Scholar

  • [43] Choudhury, A. (2009). Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors and Actuators B: Chemical, 138, 318–325. DOI: 10.1016/j.snb.2009.01.019. http://dx.doi.org/10.1016/j.snb.2009.01.019CrossrefGoogle Scholar

  • [44] Choudhury, A., Kar, P., Mukherjee, M., & Adhikari, B. (2009). Polyaniline/silver nanocomposite based acetone vapour sensor. Sensor Letters, 7, 592–598. DOI: 10.1166/sl.2009.1115. http://dx.doi.org/10.1166/sl.2009.1115CrossrefGoogle Scholar

  • [45] Ćirić-Marjanović, G., Trchová, M., Konyushenko, E. N., Holler, P., & Stejskal, J. (2008). Chemical oxidative polymerization of aminodiphenylamines. Journal of Physical Chemistry B, 112, 6976–6987. DOI: 10.1021/jp710963e. http://dx.doi.org/10.1021/jp710963eCrossrefGoogle Scholar

  • [46] Ćirić-Marjanović, G., Marjanović, B., Bober, P., Rozlívková, Z., Stejskal, J., Trchová, M., & Prokeš, J. (2011). The oxidative polymerization of p-phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3387–3403. DOI: 10.1002/pola.24775. http://dx.doi.org/10.1002/pola.24775CrossrefGoogle Scholar

  • [47] Correa, C. M., Faez, R., Bizeto, M. A., & Camilo, F. F. (2012). One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid. RSC Advances, 2, 3088–3093. DOI: 10.1039/c2ra00992g. http://dx.doi.org/10.1039/c2ra00992gCrossrefGoogle Scholar

  • [48] Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N., Jr., & Zucolotto, V. (2009). Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 24, 3073–3077. DOI: 10.1016/j.bios.2009.03. 026. http://dx.doi.org/10.1016/j.bios.2009.03.026CrossrefGoogle Scholar

  • [49] Dallas, P., Niarchos, D., Vrbanic, D., Boukos, N., Pejovnik, S., Trapalis, C., & Petridis, D. (2007). Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites. Polymer, 48, 2007–2013. DOI: 10.1016/j.polymer.2007.01.058. http://dx.doi.org/10.1016/j.polymer.2007.01.058CrossrefGoogle Scholar

  • [50] Dawn, A., & Nandi, A. K. (2006). Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite. Journal of Physical Chemistry B, 110, 18291–18298. DOI: 10.1021/jp063269z. http://dx.doi.org/10.1021/jp063269zCrossrefGoogle Scholar

  • [51] Dawn, A., Mukherjee, P., & Nandi, A. K. (2007). Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer. Langmuir, 23, 5231–5237. DOI: 10.1021/la063229m. http://dx.doi.org/10.1021/la063229mCrossrefGoogle Scholar

  • [52] de Azevedo, W. M., de Barros, R. A., & da Silva, E. F. (2008a). Conductive polymer preparation under extreme or non-classical conditions. Journal of Materials Science, 43, 1400–1405. DOI: 10.1007/s10853-007-2278-2. http://dx.doi.org/10.1007/s10853-007-2278-2CrossrefGoogle Scholar

  • [53] de Azevedo, W. M., de Mattos, I. L., Navarro, M., & da Silva, E. F., Jr. (2008b). Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite. Applied Surface Science, 255, 770–774. DOI: 10.1016/j.apsusc.2008.07.039. http://dx.doi.org/10.1016/j.apsusc.2008.07.039CrossrefGoogle Scholar

  • [54] de Barros, R. A., Martins, C. R., & de Azevedo, W. M. (2005). Writing with conducting polymer. Synthetic Metals, 155, 35–38. DOI: 10.1016/j.synthmet.2005.05.014. http://dx.doi.org/10.1016/j.synthmet.2005.05.014CrossrefGoogle Scholar

  • [55] de Barros, R. A., & de Azevedo, W. M. (2008). Polyaniline/silver nanocomposite preparation under extreme or nonclassical conditions. Synthetic Metals, 158, 922–926. DOI: 10.1016/j.synthmet.2008.06.021. http://dx.doi.org/10.1016/j.synthmet.2008.06.021CrossrefGoogle Scholar

  • [56] de Barros, R. A., Areias, M. C. C., & de Azevedo, W. M. (2010). Conducting polymer photopolymerization mechanism: The role of nitrate anions (NO 3−). Synthetic Metals, 160, 61–64. DOI: 10.1016/j.synthmet.2009.09.033. http://dx.doi.org/10.1016/j.synthmet.2009.09.033CrossrefGoogle Scholar

  • [57] de Barros, R. A., & de Azevedo, W. M. (2010). Solvent coassisted ultrasound technique for the preparation of silver nanowire/polyaniline composite. Synthetic Metals, 160, 1387–1391. DOI: 10.1016/j.synthmet.2010.04.006. http://dx.doi.org/10.1016/j.synthmet.2010.04.006CrossrefGoogle Scholar

  • [58] Della Pina, C., Falletta, E., & Rossi, M. (2011). Conductive materials by metal catalyzed polymerization. Catalysis Today, 160, 11–27. DOI: 10.1016/j.cattod.2010.05.023. http://dx.doi.org/10.1016/j.cattod.2010.05.023CrossrefGoogle Scholar

  • [59] D’Eramo, F., Silber, J. J., Arévalo, A. H., & Sereno, L. E. (2000). Electrochemical detection of silver ions and the study of metal-polymer interactions on a polybenzidine film electrode. Journal of Electroanalytical Chemistry, 494, 60–68. DOI: 10.1016/s0022-0728(00)00329-6. http://dx.doi.org/10.1016/S0022-0728(00)00329-6CrossrefGoogle Scholar

  • [60] Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112. http://dx.doi.org/10.1016/j.polymer.2006.03.112CrossrefGoogle Scholar

  • [61] Dispenza, C., Sabatino, M. A., Chmielewska, D., LoPresti, C., & Battaglia, G. (2012). Inherently fluorescent polyaniline nanoparticles in a dynamic landscape. Reactive & Functional Polymers, 72, 185–197. DOI: 10.1016/j.reactfunctpolym.2012.01.001. http://dx.doi.org/10.1016/j.reactfunctpolym.2012.01.001CrossrefGoogle Scholar

  • [62] Drury, A., Chaure, S., Kröll, M., Nicolosi, V., Chaure, N., & Blau, W. J. (2007). Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chemistry of Materials, 19, 4252–4258. DOI: 10.1021/cm071102s. http://dx.doi.org/10.1021/cm071102sCrossrefGoogle Scholar

  • [63] Du, J. M., Liu, Z. M., Han, B. X., Li, Z. H., Zhang, J. L., & Huang, Y. (2005). One-pot synthesis of macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous and Mesoporous Materials, 84, 254–260. DOI: 10.1016/j.micromeso.2005.05.036. http://dx.doi.org/10.1016/j.micromeso.2005.05.036CrossrefGoogle Scholar

  • [64] Efros, A. L., & Shklovski, B. I. (1976). Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Physica Status Solidi B, 76, 475–485. DOI: 10.1002/pssb.2220760205. http://dx.doi.org/10.1002/pssb.2220760205CrossrefGoogle Scholar

  • [65] Feng, X. M. (2010). Synthesis of Ag/polypyrrole core-shell nanospheres by a seeding method. Chinese Journal of Chemistry, 28, 1359–1362. DOI: 10.1002/cjoc.201090232. http://dx.doi.org/10.1002/cjoc.201090232CrossrefGoogle Scholar

  • [66] Feng, X. M., Huang, H. P., Ye, Q. Q., Zhu, J. J., & Hou, W. H. (2007a). Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles. Journal of Physical Chemistry C, 111, 8463–8468. DOI: 10.1021/jp071140z. http://dx.doi.org/10.1021/jp071140zCrossrefGoogle Scholar

  • [67] Feng, X. M., Sun, Z. Z., Hou, W. H., & Zhu, J. J. (2007b). Synthesis of functional polypyrrole/Prussian blue and polypyrrole/Ag composite microtubes by using a reactive template. Nanotechnology, 18, 195603. DOI: 10.1088/0957-4484/18/19/195603. http://dx.doi.org/10.1088/0957-4484/18/19/195603CrossrefGoogle Scholar

  • [68] Feng, X. M., Huang, H. P., Xu, L., Zhu, J. J., & Hou, W. H. (2008). Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan. Journal of Nanoscience and Nanotechnology, 8, 443–447. DOI: 10.1166/jnn.2008.028. http://dx.doi.org/10.1166/jnn.2008.054CrossrefGoogle Scholar

  • [69] Firoz Babu, K., Dhandapani, P., Maruthamuthu, S., & Anbu Kulandainathan, M. (2012). One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90, 1557–1563. DOI: 10.1016/j.carbpol.2012.07.030. http://dx.doi.org/10.1016/j.carbpol.2012.07.030CrossrefGoogle Scholar

  • [70] Fujii, S., Nishimura, Y., Aichi, A., Matsuzawa, S., Nakamura, Y., Akamatsu, K., & Nawafune, H. (2010). Facile one-step route to polyaniline-silver nanocomposite particles and their application as a colored particulate emulsifier. Synthetic Metals, 160, 1433–1437. DOI: 10.1016/j.synthmet.2010.04.024. http://dx.doi.org/10.1016/j.synthmet.2010.04.024CrossrefGoogle Scholar

  • [71] Fuke, M. V., Vijayan, A., Kanitkar, P., & Aiyer, R. C. (2009a). Optical humidity sensing characteristics of Ag-polyaniline nanocomposite. IEEE Sensors Journal, 9, 648–653. DOI: 10.1109/jsen.2009.2020662. http://dx.doi.org/10.1109/JSEN.2009.2020662CrossrefGoogle Scholar

  • [72] Fuke, M. V., Vijayan, A., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2009b). Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor. Journal of Materials Science: Materials in Electronics, 20, 695–703. DOI: 10.1007/s10854-008-9787-x. http://dx.doi.org/10.1007/s10854-008-9787-xCrossrefGoogle Scholar

  • [73] Fuke, M. V., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2010). Effect of particle size variation of Ag nanoparticles in polyaniline composite on humidity sensing. Talanta, 81, 320–326. DOI: 10.1016/j.talanta.2009.12.003. http://dx.doi.org/10.1016/j.talanta.2009.12.003CrossrefGoogle Scholar

  • [74] Gao, Y., Shan, D., Cao, F., Gong, J., Li, X., Ma, H. Y., Su, Z. M., & Qu, L. Y. (2009). Silver/polyaniline composite nanotubes: One-step synthesis and electrocatalytic activity of neurotransmitter dopamine. Journal of Physical Chemistry C, 113, 15175–15181. DOI: 10.1021/jp904788d. http://dx.doi.org/10.1021/jp904788dCrossrefGoogle Scholar

  • [75] Gao, L., Lv, S., & Xing, S. X. (2012). Facile route to achieve silver@ polyaniline nanofibers. Synthetic Metals, 162, 948–952. DOI: 10.1016/j.synthmet.2012.04.026. http://dx.doi.org/10.1016/j.synthmet.2012.04.026CrossrefGoogle Scholar

  • [76] Garai, A., Chatterjee, S., & Nandi, A. K. (2010). Nanocomposites of silver nanoparticle and dinonylnaphthalene disulfonic acid-doped thermoreversible polyaniline gel. Polymer Engineering & Science, 50, 446–454. DOI: 10.1002/pen.21545. http://dx.doi.org/10.1002/pen.21545CrossrefGoogle Scholar

  • [77] Ghorbani, M., Lashkenari, M. S., & Eisazadeh, H. (2011). Synthesis and thermal stability studies of polyaniline/silver nanocomposite based on reduction of silver ions using polyaniline. High Performance Polymers, 23, 513–517. DOI: 10.1177/0954008311419049. http://dx.doi.org/10.1177/0954008311419049CrossrefGoogle Scholar

  • [78] Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum of antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7, 4204–4209. DOI: 10.1016/j.actbio.2011.07.018. http://dx.doi.org/10.1016/j.actbio.2011.07.018CrossrefGoogle Scholar

  • [79] Gniadek, M., Bak, E., Stojek, Z., & Donten, M. (2010a). Metalion driven synthesis of polyaniline composite doped with metallic nanocrystals at the boudary of two immiscible liquids. Journal of Solid State Electrochemistry, 14, 1303–1310. DOI: 10.1007/s10008-009-0939-6. http://dx.doi.org/10.1007/s10008-009-0939-6CrossrefGoogle Scholar

  • [80] Gniadek, M., Donten, M., & Stojek Z. (2010b). Electroless formation of conductive polymer-metal nanostructured composites at boundry of two immiscible solvents. Morphology and properties. Electrochimica Acta, 55, 7737–7744. DOI: 10.1016/j.electacta.2009.10.064. http://dx.doi.org/10.1016/j.electacta.2009.10.064CrossrefGoogle Scholar

  • [81] Grinou, A., Bak, H. S., Yun, Y. S., & Jin, H. J. (2012). Polyaniline/silver nanoparticle-doped multiwalled carbon nanotube composites. Journal of Dispersion Science and Technology, 33, 750–755. DOI: 10.1080/01932691.2011.567862. http://dx.doi.org/10.1080/01932691.2011.567862CrossrefGoogle Scholar

  • [82] Guo, S. J., & Wang, E. K. (2008). One pot, facile synthesis of hierarchical silver nanostrip assembling architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 673–678. DOI: 10.1016/j.colsurfa.2007.12.002. http://dx.doi.org/10.1016/j.colsurfa.2007.12.002CrossrefGoogle Scholar

  • [83] Gupta, K., Jana, P. C., & Meikap, A. K. (2010). Optical and electrical properties of polyaniline-silver nanocomposite. Synthetic Metals, 160, 1566–1573. DOI: 10.1016/j.synthmet. 2010.05.026. http://dx.doi.org/10.1016/j.synthmet.2010.05.026CrossrefGoogle Scholar

  • [84] Han, J., Fang, P., Jiang, W. J., Li, L., & Guo, R. (2012). Ag-Nanoparticle-loaded mesoporous silica: Spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir, 28, 4768–4775. DOI: 10.1021/la204503b. http://dx.doi.org/10.1021/la204503bCrossrefGoogle Scholar

  • [85] He, J. J., Han, X. J., Yan, J., Kang, L. L., Zhang, B., Du, Y. C., Dong, C. K., Wang, H. L., & Xu, P. (2012a). Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm, 14, 4952–4954. DOI: 10.1039/c2ce25257k. http://dx.doi.org/10.1039/c2ce25257kCrossrefGoogle Scholar

  • [86] He, Z. W., Lü, Q. F., & Zhang, J. Y. (2012b). Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability. ACS Applied Materials & Interfaces, 4, 369–374. DOI: 10.1021/am201447s. http://dx.doi.org/10.1021/am201447sCrossrefGoogle Scholar

  • [87] Hosseini, M., & Momeni, M. M. (2010). Silver nanoparticles dispersed in polyaniline matrix coated on titanium substrate as a novel electrode for electro-oxidation of hydrazine. Journal of Materials Science, 45, 3304–3310. DOI: 10.1007/s10853-010-4347-1. http://dx.doi.org/10.1007/s10853-010-4347-1CrossrefGoogle Scholar

  • [88] Huang, M. R., Li, X. G., & Li, S. X. (2005). The synthesis of polydiaminonaphthalene and its highly reactive adsorption for heavy metal ions. Progress in Chemistry, 17, 299–309. Google Scholar

  • [89] Huang, L. M., Huang, G. C., & Wen, T. C. (2006a). Role of anions in the polymerization of 2,5-dimethylaniline in the presence of poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 6624–6632. DOI: 10.1002/pola.21745. http://dx.doi.org/10.1002/pola.21745CrossrefGoogle Scholar

  • [90] Huang, L. M., Tsai, C. C., Wen, T. C., & Gopalan, A. (2006b). Simultaneous synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 3843–3852. DOI: 10.1002/pola.21479. http://dx.doi.org/10.1002/pola.21479CrossrefGoogle Scholar

  • [91] Huang, L. M., & Wen, T. C. (2007). One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Materials Science and Engineering A, 445–446, 7–13. DOI: 10.1016/j.msea.2006.05.121. http://dx.doi.org/10.1016/j.msea.2006.05.121CrossrefGoogle Scholar

  • [92] Huang, L. M., Liao, W. H., Ling, H. C., & Wen, T. C. (2009). Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles. Materials Chemistry and Physics, 116, 474–478. DOI: 10.1016/j.matchemphys.2009.04.035. http://dx.doi.org/10.1016/j.matchemphys.2009.04.035CrossrefGoogle Scholar

  • [93] Huang, Z. H., Shi, L., Zhu, Q. R., Zou, J. T., & Chen, T. (2010). Fabrication of polyaniline/silver nanocomposite under γ-ray irradiation. Chinese Journal of Chemical Physics, 23, 701–706. DOI: 10.1088/1674-0068/23/06/701-706. http://dx.doi.org/10.1088/1674-0068/23/06/701-706CrossrefGoogle Scholar

  • [94] Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012a). Biocompatibility of polyaniline. Synthetic Metals, 162, 722–727. DOI: 10.1016/j.synthmet.2012.02.024. http://dx.doi.org/10.1016/j.synthmet.2012.02.024CrossrefGoogle Scholar

  • [95] Humpoliček, P., Kašpárková, Z., & Ševčíkověká, P. (2012b). Proliferace buněk na vodivém polymeru, polyanilinu. Chemické Listy, 106, 380–383. (in Czech) Google Scholar

  • [96] Ihalainen, P., Määttänen, A., Järnström, J., Tobjörk, D., Österbacka, R., & Peltonen, J. (2012). Influence of surface properties of coated papers on printed electronics. Industrial & Engineering Chemistry Research, 51, 6025–6036. DOI: 10.1021/ie202807v. http://dx.doi.org/10.1021/ie202807vCrossrefGoogle Scholar

  • [97] Ijeri, V. S., Nair, J. R., Gerbaldi, C., Gonnelli, R. S., Bodoardo, S., & Bongiovanni, R. M. (2010). An elegant and facile single-step UV-curing approach to surface nano-silvering of polymer composites. Soft Matter, 6, 4666–4668. DOI: 10.1039/c0sm00530d. http://dx.doi.org/10.1039/c0sm00530dCrossrefGoogle Scholar

  • [98] Ivanov, S., & Tsakova, V. (2005). Electroless versus electrodriven deposition of silver crystals in polyaniline. Role of silver anion complexes. Electrochimica Acta, 50, 5616–5623. DOI: 10.1016/j.electacta.2005.03.040. http://dx.doi.org/10.1016/j.electacta.2005.03.040CrossrefGoogle Scholar

  • [99] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010a). Effect of Ag+ on the morphologies and properties of polyaniline. Rare Metal Materials and Engineering, 39(Supplement 1), 538–543. Google Scholar

  • [100] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010b). One-step synthesis of polyaniline nanofibers decorated with silver. Journal of Applied Polymer Science, 115, 26–31. DOI: 10.1002/app.30373. http://dx.doi.org/10.1002/app.30373CrossrefGoogle Scholar

  • [101] Jia, Q. M., Shan, S. Y., Jiang, L. H., Wang, Y. M., & Li, D. (2012). Synergetic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566. DOI: 10.1002/app.36257. http://dx.doi.org/10.1002/app.36257CrossrefGoogle Scholar

  • [102] Jiménez, P., Castell, P., Sainz, R., Ansón, A., Martínez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. Journal of Physical Chemistry B, 114, 1579–1585. DOI: 10.1021/jp909093e. http://dx.doi.org/10.1021/jp909093eCrossrefGoogle Scholar

  • [103] Jing, S. G., Xing, S. X., Yu, L. X., Wu, Y., & Zhao, C. (2007a). Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 2794–2797. DOI: 10.1016/j.matlet.2006.10.032. http://dx.doi.org/10.1016/j.matlet.2006.10.032CrossrefGoogle Scholar

  • [104] Jing, S. G., Xing, S. X., Yu, L. X., & Zhao, C. (2007b). Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 4528–4530. DOI: 10.1016/j.matlet.2007.02.045. http://dx.doi.org/10.1016/j.matlet.2007.02.045CrossrefGoogle Scholar

  • [105] Joo, J., & Lee, C. Y. (2000). High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. Journal of Applied Physics, 88, 513–518. DOI: 10.1063/1.373688. http://dx.doi.org/10.1063/1.373688CrossrefGoogle Scholar

  • [106] Jung, Y. J., Govindaiah, P., Choi, S. W., Cheong, I. W., & Kim, J. H. (2011). Morphology and conducting property of Ag/poly(pyrrole) composite nanoparticles: Effect of polymeric stabilizers. Synthetic Metals, 161, 1991–1995. DOI: 10.1016/j.synthmet.2011.07.009. http://dx.doi.org/10.1016/j.synthmet.2011.07.009CrossrefGoogle Scholar

  • [107] Kabir, L., Mandal, A. R., & Mandal, S. K. (2008). Humiditysensing properties of conducting polypyrrole-silver nanocomposites. Journal of Experimental Nanoscience, 3, 297–305. DOI: 10.1080/17458080802512494. http://dx.doi.org/10.1080/17458080802512494CrossrefGoogle Scholar

  • [108] Kang, Y. O., Choi, S. H., Gopalan, A., Lee, K. P., Kang, H. D., & Song, Y. S. (2006). Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. Journal of Non-Crystalline Solids, 352, 463–468. DOI: 10.1016/j.jnoncrysol.2006.01.043. http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.043CrossrefGoogle Scholar

  • [109] Kanwal, F., Ishaq, S., & Jamil, T. (2009). Synthesis and characterization of silver hexacyanoferrate (II)/polyaniline composites. Journal of the Chemical Society of Pakistan, 31, 907–910. Google Scholar

  • [110] Kar, P., Pradhan, N. C., & Adhikari, B. (2011). Doping of processable conducting poly(m-aminophenol) with silver nanoparticles. Polymers for Advanced Technologies, 22, 1060–1066. DOI: 10.1002/pat.1622. http://dx.doi.org/10.1002/pat.1622CrossrefGoogle Scholar

  • [111] Karim, M. R., Lim, K. T., Lee, C. J., Bhuiyan, M. T. I., Kim, H. J., Park, L. S., & Lee, M. S. (2007). Synthesis of coreshell silver-polyaniline nanocomposites by gamma radiolysis method. Journal of Polymer Science, Part A: Polymer Chemistry, 45, 5741–5747. DOI: 10.1002/pola.22323. http://dx.doi.org/10.1002/pola.22323CrossrefGoogle Scholar

  • [112] Karim, M. R., Yeum, J. H., Lee, M. Y., Lee, M. S., & Lim, K. T. (2009). UV-curing synthesis of sulfonated polyanilinesilver nanocomposites by an in situ reduction method. Polymers for Advanced Technologies, 20, 639–644. DOI: 10.1002/pat.1317. http://dx.doi.org/10.1002/pat.1317CrossrefGoogle Scholar

  • [113] Kate, K. H., Damkale, S. R., Khanna, P. K., & Jain, G. H. (2011). Nano-silver mediated polymerization of pyrrole: Syn thesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. Journal of Nanoscience and Nanotechnology, 11, 7863–7869. DOI: 10.1166/jnn.2011.4708. http://dx.doi.org/10.1166/jnn.2011.4708CrossrefGoogle Scholar

  • [114] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 107, 668–677. DOI: 10.1021/jp026731y. http://dx.doi.org/10.1021/jp026731yCrossrefGoogle Scholar

  • [115] Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 35, 5571–5577. DOI: 10.1002/ejic.200700608. http://dx.doi.org/10.1002/ejic.200700608CrossrefGoogle Scholar

  • [116] Khanna, P. K., Singh, N., Charan, S., & Viswanath, A. K. (2005). Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics, 92, 214–219. DOI: 10.1016/j.matchemphys.2005.01.011. http://dx.doi.org/10.1016/j.matchemphys.2005.01.011CrossrefGoogle Scholar

  • [117] Kim, K. S., Kim, I. J., & Park, S. J. (2010a). Influence of Ag doped graphene on electrochemical behaviours and specific capacitance of polypyrrole-based nanocomposites. Synthetic Metals, 160, 2355–2360. DOI: 10.1016/j.synthmet.2010.09.011. http://dx.doi.org/10.1016/j.synthmet.2010.09.011CrossrefGoogle Scholar

  • [118] Kim, H. J., Park, S. H., & Park, H. J. (2010b). Synthesis of a new electrically conducting nanosized Ag-polyaniline-silica complex using γ-radiolysis and its biosensing applications. Radiation Physics and Chemistry, 79, 894–899. DOI: 10.1016/j.radphyschem.2010.02.005. http://dx.doi.org/10.1016/j.radphyschem.2010.02.005CrossrefGoogle Scholar

  • [119] Kim, K. S., & Park, S. J. (2011). Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. Journal of Solid State Electrochemistry, 184, 2724–2730. DOI: 10.1016/j.jssc.2011.08.010. http://dx.doi.org/10.1016/j.jssc.2011.08.010CrossrefGoogle Scholar

  • [120] Kim, H. J., Park, S. H., & Park, H. J. (2011). Hydrogen peroxide sensor based on electrically conducting nanosized Agpolyaniline-silica complex. Sensor Letters, 9, 59–63. DOI: 10.1166/sl.2011.1419. http://dx.doi.org/10.1166/sl.2011.1419CrossrefGoogle Scholar

  • [121] Kim, H. J., Choi, S. H., & Park, H. J. (2012). Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties. Radiation Physics and Chemistry, 81, 1612–1620. DOI: 10.1016/j.radphyschem.2012.04.013. http://dx.doi.org/10.1016/j.radphyschem.2012.04.013CrossrefGoogle Scholar

  • [122] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J. Prokeš, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.059CrossrefGoogle Scholar

  • [123] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008a). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes contaning nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.036CrossrefGoogle Scholar

  • [124] Konyushenko, E. N., Stejskal, J., Trchová, M., Blinova, N. V., & Holler, P. (2008b). Polymerization of aniline in ice. Synthetic Metals, 158, 927–933. DOI: 10.1016/j.synthmet.2008.06.015. http://dx.doi.org/10.1016/j.synthmet.2008.06.015CrossrefGoogle Scholar

  • [125] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-zCrossrefGoogle Scholar

  • [126] Kovałchuk, E. P., Ogenko, V. M., Reshetnyak, O. V., Pereviznyk, O. B., Davydenko, N., & Marchuk, I. E. (2010). Surface modification of silver microparticles with 4-thioaniline. Electrochimica Acta, 55, 5154–5162. DOI: 10.1016/j. electacta.2010.04.023. http://dx.doi.org/10.1016/j.electacta.2010.04.023CrossrefGoogle Scholar

  • [127] Krishna, J. B. M., Abhaya, S., Amarendra, G., Sundar, C. S., Saha, A., & Ghosh, B. (2008). Positron beam studies on polyaniline and Ag-coated polyaniline. Applied Surface Science, 255, 248–250. DOI:10.1016/j.apsusc.2008.05.189. http://dx.doi.org/10.1016/j.apsusc.2008.05.189CrossrefGoogle Scholar

  • [128] Křivka, I., Prokeš, J., Tobolková, E., & Stejskal, J. (1999). Application of percolation concepts to electrical conductivity of polyaniline-inorganic salt composites. Journal of Materials Chemistry, 9, 2425–2428. DOI: 10.1039/a904687i. http://dx.doi.org/10.1039/a904687iCrossrefGoogle Scholar

  • [129] Křížko, E. N., Trchová, M., & Stejskal, J. (2011). NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 60, 1296–1302. DOI: 10.1002/pi.3079. CrossrefGoogle Scholar

  • [130] Krutyakov, Y. A., Kudrinsky, A. A., Olenin, A. Y., & Lisichkin, G. V. (2010). Synthesis of highly stable silver colloids stabilized with water soluble sulfonated polyaniline. Applied Surface Science, 256, 7037–7042. DOI: 10.1016/j.apsusc.2010. 05.020. http://dx.doi.org/10.1016/j.apsusc.2010.05.020CrossrefGoogle Scholar

  • [131] Lee, C. Y., Song, H. G., Jang, K. S., Oh, E. J., Epstein, A. J., & Joo, J. (1999). Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synthetic Metals, 102, 1346–1349. DOI: 10.1016/s0379-6779(98)00234-3. http://dx.doi.org/10.1016/S0379-6779(98)00234-3CrossrefGoogle Scholar

  • [132] Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., Kim, M. S., Lee, J. Y., Jeong, S. H., Byun, S. W., Zang, D. S., & Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13, 577–583. DOI: 10.1002/pat227. http://dx.doi.org/10.1002/pat.227CrossrefGoogle Scholar

  • [133] Lee, H. T., & Liu, Y. C. (2005). Catalytic electrooxidation pathway for the polymerization of polypyrrole in the presence of ultrafine silver nanoparticles. Polymer, 46, 10727–10732. DOI: 10.1016/j.polymer.2005.09.031. http://dx.doi.org/10.1016/j.polymer.2005.09.031CrossrefGoogle Scholar

  • [134] Lee, K., Cho, S., Sung, H. P., Heeger, A. J., Lee, C. W., & Lee, S. H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705. http://dx.doi.org/10.1038/nature04705CrossrefGoogle Scholar

  • [135] Lee, C. W., Jin, S. H., Yoon, K. S., Jeong, H. M., & Chi, K. W. (2009). Efficient oxidation of hydroquinone and alcohols by tailor-made solid polyaniline catalyst. Tetrahedron Letters, 50, 559–561. DOI: 10.1016/j.tetlet.2008.11.062. http://dx.doi.org/10.1016/j.tetlet.2008.11.062CrossrefGoogle Scholar

  • [136] Lee, Y. J., Kim, E. H., Kim, K. J., Lee, B. H., & Choe, S. J. (2012). Polyaniline effect on the conductivity of the PMMA/Ag hybrid composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 195–202. DOI: 10.1016/j.colsurfa.2011.12.071. http://dx.doi.org/10.1016/j.colsurfa.2011.12.071CrossrefGoogle Scholar

  • [137] Leyva, M. E., Garcia, F. G., Alencar de Queiroz, A. A., & Soares, D. A. W. (2011). Electrical properties of the DGEBA/PANI-Ag composites. Journal of Materials Science: Materials in Electronics, 22, 376–383. DOI: 10.1007/s10854-010-0146-3. http://dx.doi.org/10.1007/s10854-010-0146-3CrossrefGoogle Scholar

  • [138] Li, X. G., Liu, R., & Huang, M. R. (2005). Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chemistry of Materials, 17, 5411–5419. DOI: 10.1021/cm050813s. http://dx.doi.org/10.1021/cm050813sCrossrefGoogle Scholar

  • [139] Li, W. G., Jia, Q. X., & Wang, H. L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032. http://dx.doi.org/10.1016/j.polymer.2005.11.032CrossrefGoogle Scholar

  • [140] Li, J., Tang, H. Q., Zhang, A. Q., Shen, X. T., & Zhu, L. H. (2007). A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromolecular Rapid Communications, 28, 740–745: DOI: 10.1002/marc.200600810. http://dx.doi.org/10.1002/marc.200600810CrossrefGoogle Scholar

  • [141] Li, X., Gao, Y., Gong, J., Zhang, L., & Qu, L. Y. (2009a). Polyaniline/Ag composite nanotubes prepared through UV rays irradiation via fiber template approach and their NH3 gas sensitivity. Journal of Physical Chemistry C, 113, 69–73. DOI: 10.1021/jp807535v. http://dx.doi.org/10.1021/jp807535vCrossrefGoogle Scholar

  • [142] Li, X., Gao, Y., Liu, F. H., Gong, J., & Qu, L. Y. (2009b). Synthesis of polyaniline/Ag composite nanospheres through UV rays irradiation method. Materials Letters, 63, 467–469. DOI: 10.1016/j.matlet.2008.11.027. http://dx.doi.org/10.1016/j.matlet.2008.11.027CrossrefGoogle Scholar

  • [143] Li, X. G., Ma, X. L., Sun, J., & Huang, M. R. (2009c). Powerful reactive sorption of silver(I) and mercury(II) onto poly (o-phenylenediamine) microparticles. Langmuir, 25, 1675–1684. DOI: 10.1021/la802410p. http://dx.doi.org/10.1021/la802410pCrossrefGoogle Scholar

  • [144] Li, B., Xu, Y. L., Chen, J., Chen, G. R., Zhao, C. J., Qian, X. Z., & Wang, M. (2009d). Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Applied Surface Science, 256, 235–238. DOI: 10.1016/j.apsusc.2009.08.006. http://dx.doi.org/10.1016/j.apsusc.2009.08.006CrossrefGoogle Scholar

  • [145] Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000506. http://dx.doi.org/10.1002/chem.201000506CrossrefGoogle Scholar

  • [146] Li, Z. H., & Wang, Y. W. (2010). Characterization of polyaniline/Ag nanocomposites using H2O2 and ultrasound radiation for enhancing rate. Polymer Composites, 31, 1662–1668. DOI: 10.1002/pc.20956. http://dx.doi.org/10.1002/pc.20956CrossrefGoogle Scholar

  • [147] Li, B. T., Tang, L. M., Chen, K., Xia, Y., & Jin, X. (2011). Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires. Chinese Chemical Letters, 22, 123–126. DOI: 10.1016/j.cclet.2010.06.034. http://dx.doi.org/10.1016/j.cclet.2010.06.034CrossrefGoogle Scholar

  • [148] Li, Z. F., Blum, F. D., Bertino, M. F., & Kim, C. S. (2012a). Amplified response and enhanced selectivity of metal-PANI fiber composite based vapor sensors. Sensors and Actuators B: Chemical, 161, 390–395. DOI: 10.1016/j.sab.2011.10.049. http://dx.doi.org/10.1016/j.snb.2011.10.049CrossrefGoogle Scholar

  • [149] Li, Z. H., Lin, W., Lu, J. T., Laven, J., & Foyet, A. (2012b). Reversed micelle synthesis of Ag/polyaniline nanocomposites via an in situ ultraviolet photo-redox mechanism. Polymer Composites, 33, 451–458. DOI: 10.1002/pc.21211. http://dx.doi.org/10.1002/pc.21211CrossrefGoogle Scholar

  • [150] Liang, X. X., Sun, M. X., Li, L. C., Qiao, R., Chen, K., Xiao, Q. S., & Xu, F. (2012). Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Transactions, 41, 2804–2811. DOI: 10.1039/c2dt11823h. http://dx.doi.org/10.1039/c2dt11823hCrossrefGoogle Scholar

  • [151] Liao, F., Wang, Z. F., & Hu, X. Q. (2011a). Shape-controllable synthesis of dendritic silver nanostructures at room temperature. Colloid Journal, 73, 504–508. DOI: 10.1134/s1061933 x11040053. http://dx.doi.org/10.1134/S1061933X11040053CrossrefGoogle Scholar

  • [152] Liao, F., Wang, Z. F., & Hu, X. Q. (2011b). Growth of different morphologies of silver submicrostructures: The effect of concentrations and pH. Ionics, 17, 177–182. DOI: 10.1007/s11581-010-0499-x. http://dx.doi.org/10.1007/s11581-010-0499-xCrossrefGoogle Scholar

  • [153] Liao, F., Wang, Z. F., & Sun, X. P. (2012). A novel method self-assemle silver nanowires at room temperature. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42, 325–328. DOI: 10.1080/15533174.2011.610767. http://dx.doi.org/10.1080/15533174.2011.610767CrossrefGoogle Scholar

  • [154] Lim, C. W., Song, K., & Kim, S. H. (2012). Synthesis of PPy/silica nanocomposites with cratered surfaces and their application in heavy metal extraction. Journal of Industrial and Engineering Chemistry, 18, 24–28. DOI: 10.1016/j.jiec.2011.11.115. http://dx.doi.org/10.1016/j.jiec.2011.11.115CrossrefGoogle Scholar

  • [155] Liu, Z. C., Su, Y., & Varahramyan, K. (2005). Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 478, 275–279. DOI: 10.1016/j.tsf.2004.11.077. http://dx.doi.org/10.1016/j.tsf.2004.11.077CrossrefGoogle Scholar

  • [156] Luo, C. H., Peng, H., Zhang, L. J., Lu, G. L., Wang, Y. T., & Travas-Sejdic, J. (2011). Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules, 44, 6899–6907. DOI: 10.1021/ma201350m. http://dx.doi.org/10.1021/ma201350mCrossrefGoogle Scholar

  • [157] Lyutov, V., & Tsakova, V. (2011). Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. Journal of Solid State Electrochemistry, 15, 2553–2561. DOI: 10.1007/s10008-011-1451-3. http://dx.doi.org/10.1007/s10008-011-1451-3CrossrefGoogle Scholar

  • [158] Mack, N. H., Bailey, J. A., Doorn, S. K., Chen, C. A., Gau, H. M., Xu, P., Williams, D. J., Akhadov, E. A., & Wang, H. L. (2011). Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. Langmuir, 27, 4979–4985. DOI: 10.1021/la103644j. http://dx.doi.org/10.1021/la103644jCrossrefGoogle Scholar

  • [159] Mahmoudian, M. R., Alias, Y., Basirun, W. J., & Ebadi, M. (2012). Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochimica Acta, 72, 46–52. DOI: 10.1016/j.electacta.2012.03.144. http://dx.doi.org/10.1016/j.electacta.2012.03.144CrossrefGoogle Scholar

  • [160] Mai, L. Q., Xu, X., Han, C. H., Luo, Y. Z., Xu, L., Wu, Y. A., & Zhao, Y. L. (2011). Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Letters, 11, 4992–4996. DOI: 10.1021/nl202943b. http://dx.doi.org/10.1021/nl202943bCrossrefGoogle Scholar

  • [161] Manesh, K. M., Gopalan, A. I., Lee, K. P., & Shanmugasundaram, K. (2010). Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergetic influence for catalysis. Catalysis Communications, 11, 913–918. DOI: 10.1016/j.catcom.2010.03.013. http://dx.doi.org/10.1016/j.catcom.2010.03.013CrossrefGoogle Scholar

  • [162] Manivel, A., & Anandan, S. (2011). Silver nanoparticles embedded phosphomolybdate-polyaniline hybrid electrode for electrocatalytic reduction of H2O2. Journal of Solid State Electrochemistry, 15, 153–160. DOI: 10.1007/s10008-010-1080-2. http://dx.doi.org/10.1007/s10008-010-1080-2CrossrefGoogle Scholar

  • [163] Manivel, A., Sivakumar, R., Anandan, S., & Ashokkumar, M. (2012). Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solution. Electrocatalysis, 3, 22–29. DOI: 10.1007/s12678-011-0072-z. http://dx.doi.org/10.1007/s12678-011-0072-zCrossrefGoogle Scholar

  • [164] Martins, C. R., de Almeida, Y. M., do Nascimento, G. C., & de Azevedo, W. M. (2006). Metal nanoparticles incorporation during the photopolymerization of polypyrrole. Journal of Materials Science, 41, 7413–7418. DOI: 10.1007/s10853-006-0795-z. http://dx.doi.org/10.1007/s10853-006-0795-zCrossrefGoogle Scholar

  • [165] Mazur, M., Michota-Kamińska, A., & Bukowska, J. (2007). Facile electrochemical fabrication of polymeric templates for spatially selective deposition of metals. Electrochemistry Communications, 9, 2418–2422. DOI: 10.1016/j.elecom.2007. 07.018. http://dx.doi.org/10.1016/j.elecom.2007.07.018CrossrefGoogle Scholar

  • [166] Mo, Z. L., Zuo, D. D., Chen, H., Sun, Y. X., & Zhang, P. (2007). Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 43, 300–306. DOI: 10.1016/j.eurpolymj.2006.11.023. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.023CrossrefGoogle Scholar

  • [167] Mukherjee, P., & Nandi, A. K. (2009). Electronic properties of poly(o-methoxy aniline)-silver nanocomposite thin films: influence of nanoparticle size and density. Journal of Materials Chemistry, 19, 781–786. DOI: 10.1039/b813203h. CrossrefGoogle Scholar

  • [168] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2008a). Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small, 4, 1301–1306. DOI: 10.1002/smll.200701199. http://dx.doi.org/10.1002/smll.200701199CrossrefGoogle Scholar

  • [169] Muñoz-Rojas, D., Oró-Solé, J., & Gómez-Romero, P. (2008b). From nanosnakes to nanosheets: A matrix-mediated shape evolution. Journal of Physical Chemistry C, 112, 20312–20318. DOI: 10.1021/jp808187w. http://dx.doi.org/10.1021/jp808187wCrossrefGoogle Scholar

  • [170] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2011). Shaping hybrid nanostructures with polymer matrices: the formation mechanism of silver-polypyrrole core/shell nanostructures. Journal of Materials Chemistry, 21, 2078–2086. DOI: 10.1039/c0jm01449d. http://dx.doi.org/10.1039/c0jm01449dCrossrefGoogle Scholar

  • [171] Nadagouda, M. N., & Varma, R. S. (2007). Room temperature bulk synthesis of silver nanocables wrapped with polypyrrole. Macromolecular Rapid Communications, 28, 2106–2111. DOI: 10.1002/marc.200700495. http://dx.doi.org/10.1002/marc.200700495CrossrefGoogle Scholar

  • [172] Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: Catalytic polymerization of aniline and pyrrole. Journal of Nanomaterials, 2008, 782358. DOI: 10.1155/2008/782358. http://dx.doi.org/10.1155/2008/782358CrossrefGoogle Scholar

  • [173] Narang, J., Chauhan, N., Jain, P., & Pundir, C. S. (2012). Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. International Journal of Biological Macromolecules, 50, 672–678. DOI: 10.1016/j.ijbiomac.2012.01.023. http://dx.doi.org/10.1016/j.ijbiomac.2012.01.023CrossrefGoogle Scholar

  • [174] Neelgund, G. M., Hrehorova, E., Joyce, M., & Bliznyuk, V. (2008). Synthesis and characterization of polyaniline derivatives and silver nanoparticle composites. Polymer International, 57, 1083–1089. DOI: 10.1002/pi.2445. http://dx.doi.org/10.1002/pi.2445CrossrefGoogle Scholar

  • [175] Nesher, G., Serror, M., Avnir, D., & Marom, G. (2011). Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene-polyaniline. Composites Science and Technology, 71, 152–159. DOI: 10.1016/j.compscitech.2010.11.005. http://dx.doi.org/10.1016/j.compscitech.2010.11.005CrossrefGoogle Scholar

  • [176] Nguyen, V. H., & Shim, J. J. (2011). Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synthetic Metals, 161, 2078–2082. DOI: 10.1016/j.synthmet.2011.07.017. http://dx.doi.org/10.1016/j.synthmet.2011.07.017CrossrefGoogle Scholar

  • [177] Ocypa, M., Ptacińska, M., Michalska, A., Maksymiuk, K., & Hall, E. A. H. (2006). Electroless silver deposition on polypyrrole and poly(3,4-ethylenedioxythiophene): The reaction/diffusion balance. Journal of Electroanalytical Chemistry, 596, 157–168. DOI: 10.1016/j.jelechem.2006.07.032. http://dx.doi.org/10.1016/j.jelechem.2006.07.032CrossrefGoogle Scholar

  • [178] Oliveira, M. M., Zanchet, D., Ugarte, D., & Zarbin, A. J. G. (2004) Synthesis and characterization of silver nanoparticle/polyaniline nanocomposites. Progress in Colloid and Polymer Science, 128, 49–60. DOI: 10.1007/b97108. CrossrefGoogle Scholar

  • [179] Oliveira, M. M., Castro, E. G., Canestraro, C. D., Zanchet, D., Ugarte, D., Roman, L. S., & Zarbin, A. J. G. (2006). A simple two-phase route to silver nanoparticles/polyaniline structures. Journal of Physical Chemistry B, 110, 17063–17069. DOI: 10.1021/jp060861f. http://dx.doi.org/10.1021/jp060861fCrossrefGoogle Scholar

  • [180] Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8. http://dx.doi.org/10.1016/S0379-6779(02)00498-8CrossrefGoogle Scholar

  • [181] Palaniappan, S., & Rajender, B. (2010). A novel polyanilinesilver nitrate-p-toluenesulfonic acid salt as recyclable catalyst in the stereoselective synthesis of β-amino ketones: “One-pot” synthesis in water medium. Advanced Synthesis & Catalysis, 352, 2507–2514. DOI: 10.1002/adsc.201000346. http://dx.doi.org/10.1002/adsc.201000346CrossrefGoogle Scholar

  • [182] Park, E. Y., Kim, H. Y., Song, J. Y., Oh, H. T., Song, H., & Jang, J. S. (2012). Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromolecular Research, 20, 1096–1101. DOI: 10.1007/s13233-012-0150-y. http://dx.doi.org/10.1007/s13233-012-0150-yCrossrefGoogle Scholar

  • [183] Patil, D. S., Shaikh, J. S., Pawar, S. A., Devan, R. S., Ma, Y. R., Moholkar, A. V., Kim, J. H., Kalubarme, R. S., Park, C. J., & Patil, P. S. (2012). Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. Physical Chemistry, Chemical Physics, 14, 11886–11895. DOI: 10.1039/c2cp41757j. http://dx.doi.org/10.1039/c2cp41757jCrossrefGoogle Scholar

  • [184] Paulraj, P., Janaki, N., Sandhya, S., & Pandian, K. (2011). Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 28–34. DOI: 10.1016/j.colsurfa.2010.12.001. http://dx.doi.org/10.1016/j.colsurfa.2010.12.001CrossrefGoogle Scholar

  • [185] Peng, Y. J., Qiu, L. H., Pan, C. T., Wang, C. C., Shang, S. M., & Yan, F. (2012). Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering. Electrochimica Acta, 75, 399–405. DOI: 10.1016/j.electacta.2012.05.034. http://dx.doi.org/10.1016/j.electacta.2012.05.034CrossrefGoogle Scholar

  • [186] Pickup, N. L., Shapiro, J. S., & Wong, D. K. Y. (1998). Extraction of silver by polypyrrole films upon a base-acid treatment. Analytica Chimica Acta, 364, 41–51. DOI: 10.1016/s0003-2670(98)00144-5. http://dx.doi.org/10.1016/S0003-2670(98)00144-5CrossrefGoogle Scholar

  • [187] Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., & Bertino, M. F. (2005). One-pot synthesis of polyaniline-metal nanocomposites. Chemistry of Materials, 17, 5941–5944. DOI: 10. 1021/cm050827y. http://dx.doi.org/10.1021/cm050827yCrossrefGoogle Scholar

  • [188] Pintér, E., Patakfalvi, R., Fülei, T., Gingl, Z., Dékány, I., & Visy, C. (2005). Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants. Journal of Physical Chemistry B, 109, 17474–17478. DOI: 10.1021/jp0517652. http://dx.doi.org/10.1021/jp0517652CrossrefGoogle Scholar

  • [189] Prabhakar, P. K., Raj, S., Anuradha, P. R., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids and Surfaces B: Biointerfaces, 86, 146–153: DOI 10.1016/j.colsurfb.2011.03.033. http://dx.doi.org/10.1016/j.colsurfb.2011.03.033CrossrefGoogle Scholar

  • [190] Prokeš, J., Křivka, I., & Stejskal, J. (1997). Control of electrical properties of polyaniline. Polymer International, 43, 117–125. DOI: 10.1002/(sici)1097-0126(199706)43:2〈117::aidpi713〉3.3.co;2-u. http://dx.doi.org/10.1002/(SICI)1097-0126(199706)43:2<117::AID-PI713>3.0.CO;2-2CrossrefGoogle Scholar

  • [191] Prokeš, J., & Stejskal, J. (2004). Polyaniline prepared in the presence of various acids: 2. Thermal stability of conductivity. Polymer Degradation and Stability, 86, 187–195. DOI: 10.1016/j.polymdegradstab.2004.04.012. http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.012CrossrefGoogle Scholar

  • [192] Pron, A., & Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science, 27, 135–190. 10.1016/s0079-6700(01)00043-0. http://dx.doi.org/10.1016/S0079-6700(01)00043-0Google Scholar

  • [193] Ptschelin, V. (1935). Über die Sole des Emeraldins I. Die chemische Natur, die Gewinnung und die Eigenschaften der Sole. Colloid & Polymer Science, 70, 306–311. DOI: 10.1007/bf01442769. (in German) CrossrefGoogle Scholar

  • [194] Qaiser, A. A., Hyland, M. M., & Patterson, D. A. (2011). Surface and charge transport characterization of polyaniline-cellulose acetate composite mebranes. Journal of Physical Chemistry B, 115, 1652–1661. DOI: 10.1021/jp109455m. http://dx.doi.org/10.1021/jp109455mCrossrefGoogle Scholar

  • [195] Qin, X. Y., Lu, W. B., Luo, Y. L., Chang, G. H., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated polypyrrole colloids and their application for H2O2 detection. Electrochemistry Communications, 13, 785–787. DOI: 10.1016/j.elecom.2011.05.002. http://dx.doi.org/10.1016/j.elecom.2011.05.002CrossrefGoogle Scholar

  • [196] Qin, X.Y., Liu, S., Lu, W. B., Li, H.Y., Chang, G.H., Zhang, Y. W., Tian, J. Q., Luo, Y. L., Asiri, A. M., Al-Youbi, A. O., & Sun, X. P. (2012). Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst. Catalysis Science & Technology, 2, 711–714. DOI: 10.1039/c2cy00439a. http://dx.doi.org/10.1039/c2cy00439aCrossrefGoogle Scholar

  • [197] Qiu, T., Xie, H. X., Zhang, J. R., Zahoor, A., & Li, X. Y. (2011). The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants. Journal of Nanoparticle Research, 13, 1175–1182. DOI: 10.1007/s11051-010-0109-x. http://dx.doi.org/10.1007/s11051-010-0109-xCrossrefGoogle Scholar

  • [198] Reddy, K. R., Lee, K. P., Lee, Y. I., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer-metal hydrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62, 1815–1818. DOI: 10.1016/j.matlet.2007.10.025. http://dx.doi.org/10.1016/j.matlet.2007.10.025CrossrefGoogle Scholar

  • [199] Reddy, K. R., Sin, B. C., Ryu, K. S., Kim, J. C., Chung, H. I., & Lee, Y. I. (2009). Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synthetic Metals, 159, 595–603. DOI: 10.1016/j.synthmet.2008.11.030. http://dx.doi.org/10.1016/j.synthmet.2008.11.030CrossrefGoogle Scholar

  • [200] Routh, P., Mukherjee, P., & Nandi, A. K. (2010). RNA-poly(omethoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: Physical and electronic properties. Langmuir, 26, 5093–5100. DOI: 10.1021/la903553t. http://dx.doi.org/10.1021/la903553tCrossrefGoogle Scholar

  • [201] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.034CrossrefGoogle Scholar

  • [202] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.2476CrossrefGoogle Scholar

  • [203] Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential application in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.1478/s11696-009-0061-3. http://dx.doi.org/10.2478/s11696-009-0061-3CrossrefGoogle Scholar

  • [204] Sapurina, I. Y., & Stejskal, J. (2010). The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russian Chemical Reviews, 79, 1123–1143. DOI: 10.1070/rc2010v079n12abeh004140. http://dx.doi.org/10.1070/RC2010v079n12ABEH004140CrossrefGoogle Scholar

  • [205] Sapurina, I. Y., & Stejskal, J. (2012). Oxidation of aniline with strong and weak oxidants. Russian Journal of General Chemistry, 82, 256–275. DOI: 10.1134/s1070363212020168. http://dx.doi.org/10.1134/S1070363212020168CrossrefGoogle Scholar

  • [206] Šeděnková, M., Stejskal, J., & Prokeš, J. (2009). Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. ACS Applied Materials & Interfaces, 1, 1906–1912. DOI: 10.1021/am900320t. http://dx.doi.org/10.1021/am900320tCrossrefGoogle Scholar

  • [207] Šeděnková, M., & Prokeš, J. (2011). Solid-state oxidation of aniline hydrochloride with various oxidants. Synthetic Metals, 161, 1353–1360. DOI: 10.1016/j.synthmet.2011.04.037. http://dx.doi.org/10.1016/j.synthmet.2011.04.037CrossrefGoogle Scholar

  • [208] Sestrem, R. H., Ferreira, D. C., Landers, R., Temperini, M. L. A., & do Nascimento, G. M. (2010). Synthesis and spectroscopic characterization of polymer and oligomers of orthophenylenediamine. European Polymer Journal, 46, 484–493. DOI: 10.1016/j.eurpolymj.2009.12.007. http://dx.doi.org/10.1016/j.eurpolymj.2009.12.007CrossrefGoogle Scholar

  • [209] Sezer, A., Gurudas, U., Collins, B., Mckinlay, A., & Bubb, D. M. (2009). Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chemical Physics Letters, 477, 164–168. DOI: 10.1016/j.cplett.2009. 06.070. http://dx.doi.org/10.1016/j.cplett.2009.06.070CrossrefGoogle Scholar

  • [210] Shahi, M., Moghimi, A., Naderizadeh, B., & Maddah, B. (2011). Electrospun PVA-PANI and PVA-PANI-AgNO3 composite nanofibers. Scientia Iranica, 18, 1327–1331. DOI: 10.1016/j.scient.2011.08.013. http://dx.doi.org/10.1016/j.scient.2011.08.013CrossrefGoogle Scholar

  • [211] Sharma, J., & Imae, T. (2009). Recent advances in fabrication of anisotropic metallic nanostructures. Journal of Nanoscience and Nanotechnology, 9, 19–40. DOI: 10.1166/jnn.2009.j087. http://dx.doi.org/10.1166/jnn.2009.J087CrossrefGoogle Scholar

  • [212] Shenashen, M. A., Ayad, M. M., Salahuddin, N., & Youssif, M. A. (2010). Usage of quartz crystal microbalance technique to study polyaniline films formation in the presence of pphenylenediamine. Reactive & Functional Polymers, 70, 843–848. DOI: 10.1016/j.reactfunctpolym.2010.07.005. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.005CrossrefGoogle Scholar

  • [213] Shenashen, M. A., Okamoto, T., & Haraguchi, M. (2011). Study the effect of phenylenediamine compounds on the chemical polymerization of aniline. Reactive & Functional Polymers, 71, 766–773. DOI: 10.1016/j.reactfunctpolym.2011.02.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2011.02.004CrossrefGoogle Scholar

  • [214] Shi, Z. Q., Wang, H. J., Dai, T. Y., & Lu, Y. (2010). Room temperature synthesis of Ag/polypyrrole core-shell nanoparticles and hollow composite capsules. Synthetic Metals, 160, 2121–2127. DOI: 10.1016/j.synthmet.2010.07.042. http://dx.doi.org/10.1016/j.synthmet.2010.07.042CrossrefGoogle Scholar

  • [215] Shi, Z. Q., Zhou, H., Qing, X. T., Dai, T. Y., & Lu, Y. (2012). Facile fabrication and characterization of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antimicrobial property. Applied Surface Science, 258, 6359–6365. DOI: 10.1016/j.apsusc.2012.03.040. http://dx.doi.org/10.1016/j.apsusc.2012.03.040CrossrefGoogle Scholar

  • [216] Shin, D. Y., & Kim, I. (2009). Self-patterning of fine metal electrodes by means of the formation of isolated silver nanoclusters embedded in polyaniline. Nanotechnology, 20, 415301. DOI: 10.1088/0957-4484/20/41/415301. http://dx.doi.org/10.1088/0957-4484/20/41/415301CrossrefGoogle Scholar

  • [217] Shukla, V. K., Yadav, P., Yadav, R. S., Mishra, P., & Pandey, A. C. (2012). A new class of PANI-Ag core-shell nanorods with sensing dimensions. Nanoscale, 4, 3886–3893. DOI: 10.1039/c2nr30963g. http://dx.doi.org/10.1039/c2nr30963gCrossrefGoogle Scholar

  • [218] Silva, C. H. B., Ferreira, D. C., Constantino, V. R. L., & Temperini, M. L. A. (2011). Characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. Journal of Raman Spectroscopy, 42, 1653–1659. DOI: 10.1002/jrs.2898. http://dx.doi.org/10.1002/jrs.2898CrossrefGoogle Scholar

  • [219] Sim, S. Y., Gu, Y. J., Ahn, H. J., Yoon, C. S., & Im, S. S. (2009). Enhanced electrical conductivity of Ag-mercaptosuccinic acid-redoped polyaniline nanoparticles during thermal cycling above 200°. Polymer Degradation and Stability, 94, 208–212. DOI: 10.1016/j.polymdegradstab.2008.11.002. http://dx.doi.org/10.1016/j.polymdegradstab.2008.11.002CrossrefGoogle Scholar

  • [220] Sinai, O., & Avnir, D. (2011). Organics@metals as the basis for silver/doped-silver electrochemical cell. Chemistry of Materials, 23, 3289–3295. DOI: 10.1021/cm2000655. http://dx.doi.org/10.1021/cm2000655CrossrefGoogle Scholar

  • [221] Singh, R. P., Tiwari, A., & Pandey, A. C. (2011). Silver/polyaniline nanocomposite for the electrocatalytic hydrazine oxidation. Journal of Inorganic and Organometalic Polymers and Materials, 21, 788–792. DOI: 10.1007/s10904-011-9554-y. http://dx.doi.org/10.1007/s10904-011-9554-yCrossrefGoogle Scholar

  • [222] Song, W., Jia, H. Y., Cong, Q., & Zhao, B. (2007). Silver microflowers and large spherical particles: Controlled preparation and their wetting properties. Journal of Colloid and Interface Science, 311, 456–460. DOI: 10.1016/j.jcis.2007.03.058. http://dx.doi.org/10.1016/j.jcis.2007.03.058CrossrefGoogle Scholar

  • [223] Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35, 357–401. DOI: 10.1016/j.progpolymsci.2009.09.003. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003CrossrefGoogle Scholar

  • [224] Stamplecoskie, K. G., & Scaiano, J. C. (2011). Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 115, 1403–1409. DOI: 10.1021/jp106666t. http://dx.doi.org/10.1021/jp106666tCrossrefGoogle Scholar

  • [225] Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258. Google Scholar

  • [226] Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Polyaniline dispersions 2. UV-Vis absorption spectra. Synthetic Metals, 61, 225–231. DOI: 10.1016/0379-6779(93) 91266-5. http://dx.doi.org/10.1016/0379-6779(93)91266-5CrossrefGoogle Scholar

  • [227] Stejskal, J., Kratochvíl, P., & Špírková, M. (1995). Accelerating effect of some cation radicals on the polymerization of aniline. Polymer, 36, 4135–4140. DOI: 10.1016/0032-3861(95)90996-f. http://dx.doi.org/10.1016/0032-3861(95)90996-FCrossrefGoogle Scholar

  • [228] Stejskal, J., Kratochvíl, P., & Helmstedt, M. (1996a). Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir, 12, 3389–3392. DOI: 10.1021/la9506483. http://dx.doi.org/10.1021/la9506483CrossrefGoogle Scholar

  • [229] Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996b). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-x. http://dx.doi.org/10.1016/0032-3861(96)81113-XCrossrefGoogle Scholar

  • [230] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac200274050857CrossrefGoogle Scholar

  • [231] Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0. http://dx.doi.org/10.1016/S0032-3861(02)00906-0CrossrefGoogle Scholar

  • [232] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.007CrossrefGoogle Scholar

  • [233] Stejskal, J., Prokeš, J., & Trchová, M. (2008a). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.012CrossrefGoogle Scholar

  • [234] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008b). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601qCrossrefGoogle Scholar

  • [235] Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008c). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-zCrossrefGoogle Scholar

  • [236] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009a). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: Beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.2605CrossrefGoogle Scholar

  • [237] Stejskal, J., Prokeš, J., & Sapurina, I. (2009b). The reduction of silver ions with polyaniline: The effect of the type of polyaniline and the mole ratio of reagents. Materials Letters, 63, 709–711. DOI: 10.1016/j.matlet.2008.12.026. http://dx.doi.org/10.1016/j.matlet.2008.12.026CrossrefGoogle Scholar

  • [238] Stejskal, J., Trchová, M., Brožovš, J. (2009c). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-zCrossrefGoogle Scholar

  • [239] Stejskal, J., Trchová, M., Kovářová, J., Brožová, L., & Prokeš, J. (2009d). The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites. Reactive & Functional Polymers, 69, 86–90. DOI: 10.1016/j.reactfunctpolym.2008.11.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.11.004CrossrefGoogle Scholar

  • [240] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.006CrossrefGoogle Scholar

  • [241] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.3179CrossrefGoogle Scholar

  • [242] Sulimenko, T., Stejskal, J., & Prokeš, J. (2001). Poly(phenylenediamine) dispersions. Journal of Colloid and Interface Science, 236, 328–334. DOI: 10.1006/jcis.2000.7415. http://dx.doi.org/10.1006/jcis.2000.7415CrossrefGoogle Scholar

  • [243] Sun, X. P. (2010). Morphology and size-controllable preparation of silver nanostructures through a wet-chemical route at room temperature. Inorganic Materials, 46, 679–682. DOI: 10.1134/s0020168510060208. http://dx.doi.org/10.1134/S0020168510060208CrossrefGoogle Scholar

  • [244] Sun, X. P., Dong, S. J., & Wang, E. K. (2005). Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route. Journal of Colloid and Interface Science, 290, 130–133. DOI: 10.1016/j.jcis.2005.04.016. http://dx.doi.org/10.1016/j.jcis.2005.04.016CrossrefGoogle Scholar

  • [245] Sun, X. P., & Hagner, M. (2007). Novel preparation of snowflake-like dendritic nanostructures of Ag and Au at room temperature via a wet-chemical route. Langmuir, 23, 9147–9150. DOI: 10.1021/la701519x. http://dx.doi.org/10.1021/la701519xCrossrefGoogle Scholar

  • [246] Sun, Y. Y., Guo, G. H., Yang, B. H., He, M. H., Tian, Y., Cheng, J. C., & Liu, Y. Q. (2012). Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. Journal of Materials Research, 27, 457–462. DOI: 10.1557/jmr.2011.408. http://dx.doi.org/10.1557/jmr.2011.408CrossrefGoogle Scholar

  • [247] Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., & Kale, B. B. (2012). Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 92, 35–41. DOI: 10.1016/j.colsurfb.2011.11.006. http://dx.doi.org/10.1016/j.colsurfb.2011.11.006CrossrefGoogle Scholar

  • [248] Tan, Y. W., Li, Y. F., & Zhu, D. B. (2003). Preparation of silver nanocrystals in the presence of aniline. Journal of Colloid and Interface Science, 258, 244–251. DOI: 10.1016/s0021-9797(02)00151-0. http://dx.doi.org/10.1016/S0021-9797(02)00151-0CrossrefGoogle Scholar

  • [249] Tchmutin, I. A., Ponomarenko, A. T., Krinichnaya, E. P., Kozub, G. I., & Efimov, O. N. (2003). Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 41, 1391–1395. DOI: 10.1016/s0008-6223(03)00067-8. http://dx.doi.org/10.1016/S0008-6223(03)00067-8CrossrefGoogle Scholar

  • [250] Thanjam, S., Philips, M. F., Komathi, S., Manisankar, P., Sivakumar, C., Gopalan, A., & Lee, K. P. (2011). Course of poly(4-aminodiphenylamine)/Ag nanocomposite formation through UV-vis spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 1256–1266. DOI: 10.1016/j.saa.2011.04.052. http://dx.doi.org/10.1016/j.saa.2011.04.052CrossrefGoogle Scholar

  • [251] Thanjam, I. S., Philips, M. F., Komathi, S., Manisankar, P., Gopalan, A. I., & Lee, K. P. (2012a). Influence of medium on the nanostructures and properties of poly(4-aminodiphenylamine)-silver nanocomposites. Polymer International, 61, 539–544. DOI: 10.1002/pi.3200. http://dx.doi.org/10.1002/pi.3200CrossrefGoogle Scholar

  • [252] Thanjam, I. S., Philips, M. F., Lee, K. P., & Gopalan, A. (2012b). Preparation of poly(4-aminodiphenylamine)/silver nanoparticles composite and catalysis. Journal of Materials Science: Materials in Electronics, 23, 807–810. DOI: 10.1007/s10854-011-0496-5. http://dx.doi.org/10.1007/s10854-011-0496-5CrossrefGoogle Scholar

  • [253] Tian, Y., Li, Z. Q., Ski, K., & Yang, F. L. (2008). Spontaneous and electrochemical reduction of silver by polypyrrole deposits. Separation Science and Technology, 43, 3891–3901. DOI: 10.1080/01496390802212625. http://dx.doi.org/10.1080/01496390802212625CrossrefGoogle Scholar

  • [254] Tian, J. Q., Liu, S., & Sun, X. P. (2010). Supramolecular microfibrils of o-phenylenediamine dimers: Oxidation-induced morphology change and the spontaneous formation of Ag nanoparticle decorated nanofibers. Langmuir, 26, 15112–15116. DOI: 10.1021/la103038m. http://dx.doi.org/10.1021/la103038mCrossrefGoogle Scholar

  • [255] Tian, J. Q., Li, H. L., Lu, W. B., Luo, Y. L., Wang, L., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated poly(mphenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst, 136, 1806–1809. DOI: 10.1039/c0an00929f. http://dx.doi.org/10.1039/c0an00929fCrossrefGoogle Scholar

  • [256] Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008). Substituted polyaniline nanofibers produced via rapid initiated polymerization, Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d. http://dx.doi.org/10.1021/ma800122dCrossrefGoogle Scholar

  • [257] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.001CrossrefGoogle Scholar

  • [258] Trchová, M., & Stejskal, J. (2010). The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synthetic Metals, 160, 1479–1486. DOI: 10.1016/j.synthmet.2010.05.007. http://dx.doi.org/10.1016/j.synthmet.2010.05.007CrossrefGoogle Scholar

  • [259] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-6CrossrefGoogle Scholar

  • [260] Tsakova, V. (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. Journal of Solid State Electrochemistry, 12, 1421–1434. DOI: 10.1007/s10008-007-0494-y. http://dx.doi.org/10.1007/s10008-007-0494-yCrossrefGoogle Scholar

  • [261] Visy, C., Pintér, E., Fülei, T., & Ptakfalvi, R. (2005). Characterization of electronically conducting polypyrrole based composite materials. Synthetic Metals, 152, 13–16. DOI: 10.1016/j.synthmet.2005.07.084. http://dx.doi.org/10.1016/j.synthmet.2005.07.084CrossrefGoogle Scholar

  • [262] Vorotyntsev, M. A., Skompska, M., Rajchowska, A., Borysiuk, J., & Donten, M. (2011). A new strategy towards electroactive polymer-inorganic nanostructure composites. Silver nanoparticles inside polypyrrole matrix with pendant titanocene dichloride complexes. Journal of Electroanalytical Chemistry, 662, 105–115. DOI: 10.1016/j.jelechem.2011.03. 037. CrossrefGoogle Scholar

  • [263] Wang, H. L., Li, W. G., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposi tion of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508. http://dx.doi.org/10.1021/cm0619508CrossrefGoogle Scholar

  • [264] Wang, S. B., & Shi, G. Q. (2007). Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Materials Chemistry and Physics, 102, 255–259. DOI: 10.1016/j.matchemphys.2006.12.014. http://dx.doi.org/10.1016/j.matchemphys.2006.12.014CrossrefGoogle Scholar

  • [265] Wang, W., Li, Q., Li, Y., Xu, H., & Zhai, J. P. (2009a). Electroless Ag coating of fly ash cenospheres using polyaniline activator. Journal of Physics D: Applied Physics, 42, 215306. DOI: 10.1088/0022-3727/42/21/215306. http://dx.doi.org/10.1088/0022-3727/42/21/215306CrossrefGoogle Scholar

  • [266] Wang, W. Q., Shi, G. Q., & Zhang, R. F. (2009b). Facile fabrication of silver/polypyrrole composites by the modified silver mirror reaction. Journal of Materials Science, 44, 3002–3005. DOI: 10.1007/s10853-009-3416-9. http://dx.doi.org/10.1007/s10853-009-3416-9CrossrefGoogle Scholar

  • [267] Wang, W. Q., & Zhang, R. F. (2009). Silver-polypyrrole composites: Facile preparation and application in surfaceenhanced Raman spectroscopy. Synthetic Metals, 159, 1332–1335. DOI: 10.1016/j.synthmet.2009.03.002. http://dx.doi.org/10.1016/j.synthmet.2009.03.002CrossrefGoogle Scholar

  • [268] Wang, W. Q., Li, W. L., Ye, J., & Zhang, R. F. (2010a). Surface enhanced Raman scattering of Rhodamine B adsorbed on polypyrrole-silver composites. Journal of Polymer Materials, 27, 351–357. Google Scholar

  • [269] Wang, W. Q., Li, W. L., & Zhang, R. F. (2010b). Controlled fabrication of surface-enhanced-Raman scattering-active silver nanostructures on polypyrrole films. Materials Chemistry and Physics, 124, 385–388. DOI: 10.1016/j.matchemphys.2010.06.051. http://dx.doi.org/10.1016/j.matchemphys.2010.06.051CrossrefGoogle Scholar

  • [270] Wang, W. Q., Li, W. L., Zhang, R. F., & Wang, J. J. (2010c). Synthesis and characterization of Ag@PPy yolk-shell nanocomposite. Synthetic Metals, 160, 2255–2259. DOI: 10.1016/j.synthmet.2010.08.016. http://dx.doi.org/10.1016/j.synthmet.2010.08.016CrossrefGoogle Scholar

  • [271] Wang, Z. F., Liao, F., Guo, T. T., Yang, S. W., & Zeng, C. M. (2012a). Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. Journal of Electroanalytical Chemistry, 664, 135–138. DOI: 10.1016/j.jelechem.2011.11.006. http://dx.doi.org/10.1016/j.jelechem.2011.11.006CrossrefGoogle Scholar

  • [272] Wang, L., Zhu, H. Z., Song, Y. H., Liu, L., He, Z. F., Wan, L. L., Chen, S. H., Xiang, Y., Chen, S. S., & Chen, J. (2012b). Architecture of poly(o-phenylenediamine)-Ag nanoparticle composites for a hydrogen peroxide senor. Electrochimica Acta, 60, 314–320. DOI: 10.1016/j.electacta.2011.11.045. http://dx.doi.org/10.1016/j.electacta.2011.11.045CrossrefGoogle Scholar

  • [273] Wei, M., & Lu, Y. (2009). Templating fabrication of polypyrrole nanorods/nanofibers. Synthetic Metals, 159, 1061–1066. DOI: 10.1016/j.synthmet.2009.01.031. http://dx.doi.org/10.1016/j.synthmet.2009.01.031CrossrefGoogle Scholar

  • [274] Wei, Y. Y., Liang, L., Yang, X. M., Pan, G. L., Yan, G. P., & Yu, X. H. (2010a). One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Research Letters, 5, 443–437. DOI: 10.1007/s11671-009-9501-9. CrossrefGoogle Scholar

  • [275] Wei, Y. Y., Zhao, Y., Li, L., Yang, X. M., Yu, X. H., & Yan, G. P. (2010b). Magnetic ionic liquid-assisted syntesis of polypyrrole/AgCl nanocomposites. Polymers for Advanced Technologies, 21, 742–745. DOI: 10.1002/pat.1682. http://dx.doi.org/10.1002/pat.1682CrossrefGoogle Scholar

  • [276] Wessling, B., Thun, M., Arribas-Sanchez, C., Gleeson, S., Posdorfer, J., Rischka, M., & Zeysing, B. (2007). An organic metal/silver nanoparticle finish on copper for efficient passivation and solderability preservation. Nanoscale Research Letters, 2, 455–460. DOI: 10.1007/s11671-007-9086-0. http://dx.doi.org/10.1007/s11671-007-9086-0CrossrefGoogle Scholar

  • [277] Wolz, A., Zils, S., Michel, M., & Roth, C. (2010). Structured multilayered electrodes of proton/electron conducting polymer for polymer electrolyte membrane fuel cells assembled by spray coating. Journal of Power Sources, 195, 8162–8167. DOI: 10.1016/j.jpowsour.2010.06.087. http://dx.doi.org/10.1016/j.jpowsour.2010.06.087CrossrefGoogle Scholar

  • [278] Wu, X. M., Qi, S. H., He, J., Chen, B., & Duan, G. C. (2010). Synthesis of high conductivity polyaniline/Ag/graphite nanosheet composites via ultrasonic technique. Journal of Polymer Research, 17, 751–757. DOI: 10.1007/s10965-009-9366-8. http://dx.doi.org/10.1007/s10965-009-9366-8CrossrefGoogle Scholar

  • [279] Wu, X. M., Qi, S. H., & Duan, G. C. (2012). Polyaniline/graphite nanosheet, polyaniline/Ag/graphite nanosheet, polyaniline/Ni/graphite nanosheet composites and their electromagnetic properties. Synthetic Metals, 162, 1609–1614. DOI: 10.1016/j.synthmet.2012.07.012. http://dx.doi.org/10.1016/j.synthmet.2012.07.012CrossrefGoogle Scholar

  • [280] Wudl, F., Angus, R. O., Jr., Lu, F. L., Allemand, P. M., Vachon, D., Nowak, M., Liu, Z. X., Schaffer, H., & Heeger, A. J. (1987). Poly p-phenyleneamineimine: synthesis and comparison to polyaniline. Journal of the American Chemical Society, 109, 3677–3684. DOI: 10.1021/ja00246a026. http://dx.doi.org/10.1021/ja00246a026CrossrefGoogle Scholar

  • [281] Xia, Y. Y. (2011). The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature. Journal of Nanoparticle Research, 13, 1717–1721. DOI: 10.1007/s11051-010-9926-1. http://dx.doi.org/10.1007/s11051-010-9926-1CrossrefGoogle Scholar

  • [282] Xing, S. X., & Zhao, G. K. (2007). One-step synthesis of polypyrrole-Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Materials Letters, 61, 2040–2044. DOI: 10.1016/j.matlet.2006.08.011. http://dx.doi.org/10.1016/j.matlet.2006.08.011CrossrefGoogle Scholar

  • [283] Xu, P., Jeon, S. H., Chen, H. T., Luo, H. M., Zou, G. F., Jia, Q. X., Anghel, M., Teuscher, C., Williams, D. J., Zhang, B., Han, X. J., & Wang, H. L. (2010a). Facile synthesis of electrical properties of silver wires through chemical reduction by polyaniline. Journal of Physical Chemistry C, 114, 22147–22154. DOI: 10.1021/jp109207d. http://dx.doi.org/10.1021/jp109207dCrossrefGoogle Scholar

  • [284] Xu, P., Jeon, S. H., Mack, N. H., Doorn, S. K., Williams, D. J., Han, X. J., & Wang, H. L. (2010b). Field assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale, 2, 1436–1440. DOI: 10.1039/c0nr00106f. http://dx.doi.org/10.1039/c0nr00106fCrossrefGoogle Scholar

  • [285] Xu, P., Mack, N. H., Jeon, S. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010c). Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. Langmuir, 26, 8882–8886. DOI: 10.1021/la904617p. http://dx.doi.org/10.1021/la904617pCrossrefGoogle Scholar

  • [286] Xu, P., Zhang, B., Mack, N. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010d). Synthesis and homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 20, 7222–7226. DOI: 10.1039/c0jm01322f. http://dx.doi.org/10.1039/c0jm01322fCrossrefGoogle Scholar

  • [287] Yan, J., Han, X. J., He, J. J., Kang, L. L., Zhang, B., Du, Y. C., Zhao, H. T., Dong, C. K., Wang, H. L., & Xu, P. (2012). Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. Applied Materials & Interfaces, 4, 2752–2756. DOI: 10.1021/am300381v. http://dx.doi.org/10.1021/am300381vCrossrefGoogle Scholar

  • [288] Yang, X. M., & Lu, Y. (2005). Hollow nanometer-sized polypyrrole capsules with controllable shell thickness synthesized in the presence of chitosan. Polymer, 46, 5324–5328. DOI: 10.1016/j.polymer.2005.04.023. http://dx.doi.org/10.1016/j.polymer.2005.04.023CrossrefGoogle Scholar

  • [289] Yang, X. M., Li, L., & Yan, F. (2010a). Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuators B: Chemical, 145, 495–500. DOI: 10.1016/j.snb.2009.12.065. http://dx.doi.org/10.1016/j.snb.2009.12.065CrossrefGoogle Scholar

  • [290] Yang, X. M., Li, L., & Yan, F. (2010b). Fabrication of polypyrrole/Ag composite nanotubes via in situ reduction of AgNO3 on polypyrrole nanotubes. Chemistry Letters, 39, 118–119. DOI: 10.1246/cl.2010.118. http://dx.doi.org/10.1246/cl.2010.118CrossrefGoogle Scholar

  • [291] Yang, X. M., Li, L., & Zhao, Y. (2010c). Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synthetic Metals, 160, 1822–1825. DOI: 10.1016/j.synthmet.2010.06.018. http://dx.doi.org/10.1016/j.synthmet.2010.06.018CrossrefGoogle Scholar

  • [292] Yang, X., & Wang, E. (2011). A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Analytical Chemistry, 83, 5005–5011. DOI: 10.1021/ac2008465. http://dx.doi.org/10.1021/ac2008465CrossrefGoogle Scholar

  • [293] Yang, J. P., Yin, H. J., Jia, J. J., & Wei, Y. (2011). Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant. Langmuir, 27, 5047–5053. DOI: 10.1021/la200013z. http://dx.doi.org/10.1021/la200013zCrossrefGoogle Scholar

  • [294] Yang, Y. Q., Qi, S. H., Qin, Y. C., & Zhang, X. X. (2012a). Synthesis and characterization of silver-coated graphite nanosheets with pyrrole via in situ polymerization. Journal of Applied Polymer Science, 125, E388–E397. DOI: 10.1002/app.36383. http://dx.doi.org/10.1002/app.36383CrossrefGoogle Scholar

  • [295] Yang, M., Xiang, Z. J., & Wang, G. (2012b). A novel orchidlike polyaniline superstructure by solvent-thermal method. Journal of Colloid and Interface Science, 367, 49–54. DOI: 10.1016/j.jcis.2011.08.086. http://dx.doi.org/10.1016/j.jcis.2011.08.086CrossrefGoogle Scholar

  • [296] Yao, T. J., Wang, C. X., Wu, J., Lin, Q., Lv, H., Zhang, K., Yu, K., & Yang, B. (2009). Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 338, 573–577. DOI: 10.1016/j.jcis.2009.05.001. http://dx.doi.org/10.1016/j.jcis.2009.05.001CrossrefGoogle Scholar

  • [297] Ye, S. J., & Lu, Y. (2008). Optical properties of Ag@polypyrrole nanoparticles calculated by Mie theory. Journal of Physical Chemistry C, 112, 8767–8772. DOI: 10.1021/jp077710c. http://dx.doi.org/10.1021/jp077710cCrossrefGoogle Scholar

  • [298] Ye, S. J., Fang, L., & Lu, Y. (2009). Contribution of chargetransfer effect to surface-enhanced IR for Ag@PPy nanoparticles. Physical Chemistry Chemical Physics, 11, 2480–2484. DOI: 10.1039/b816070h. http://dx.doi.org/10.1039/b816070hCrossrefGoogle Scholar

  • [299] Yi, Q. F., & Song, L. H. (2012). Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis, 24, 1655–1663. DOI: 10.1002/elan.201200 154. http://dx.doi.org/10.1002/elan.201200154CrossrefGoogle Scholar

  • [300] Yin, H. J., & Yang, J. P. (2012). A novel strategy for the controlled synthesis of silver halide/polyaniline nanocomposites with different polyaniline morphologies. Macromolecular Materials and Engineering, 297, 203–208. DOI: 10.1002/mame.201100130. http://dx.doi.org/10.1002/mame.201100130CrossrefGoogle Scholar

  • [301] ZabrodskiĽ, A. G., Kompan, M. E., Malyshkin, V. G., & Sapurina, I. Y. (2006). Carbon supported polyaniline as anode catalyst: Pathway to platinum-free fuel cells. Technical Physics Letters, 32, 758–761. DOI: 10.1134/s1063785006090070. http://dx.doi.org/10.1134/S1063785006090070CrossrefGoogle Scholar

  • [302] Zhang, A. Q., Cui, C. Q., Lee, J. Y., & Loh, F. C. (1995). Interactions between polyaniline and silver cations. Journal of Electrochemical Society, 142, 1097–1104. DOI: 10.1149/1.2044136. http://dx.doi.org/10.1149/1.2044136CrossrefGoogle Scholar

  • [303] Zhang, A. Q., Cui, C. Q., & Lee, J. Y. (1996). Metalpolymer interactions in the Ag+|poly-o-aminophenol system. Journal of Electroanalytical Chemistry, 413, 143–151. DOI: 10.1016/0022-0728(96)04668-2. http://dx.doi.org/10.1016/0022-0728(96)04668-2CrossrefGoogle Scholar

  • [304] Zhang, X. Y., & Manohar, S. K. (2005). Narrow pore-diameter polypyrrole nanotubes. Journal of the American Chemical Society, 127, 14156–14157. DOI: 10.1021/ja054789v. http://dx.doi.org/10.1021/ja054789vCrossrefGoogle Scholar

  • [305] Zhang, W. M., Chen, J., Wagner, P., Swiegers, G. F., & Wallace, G. G. (2008). Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 10, 519–522. DOI: 10.1016/j.elecom.2008.01.032. http://dx.doi.org/10.1016/j.elecom.2008.01.032CrossrefGoogle Scholar

  • [306] Zhang, X. L., Xing, J. X., & Jin, F. (2010). Electrocatalytic study of silver/polypyrrole nanowire composite modified electrodes. Asian Journal of Chemistry, 22, 755–760. Google Scholar

  • [307] Zhang, L. Y., Chai, L. Y., Duan, J. Y., Li, G. L., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011a). One-step and cost-effective synthesis of micrometer-sized saw-like silver nanosheets by oil/water interfacial method. Materials Letters, 65, 1295–1298, DOI: 10.1016/j.matlet.2011.01.062. http://dx.doi.org/10.1016/j.matlet.2011.01.062CrossrefGoogle Scholar

  • [308] Zhang, L. Y., Chai, L. Y., Liu, J., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011b). pH manipulation: A facile method for lowering oxidation state and keeping good yield of poly (m-phenylenediamine) and its powerful Ag+ adsorption ability. Langmuir, 27, 13729–13738. DOI: 10.1021/la203162y. http://dx.doi.org/10.1021/la203162yCrossrefGoogle Scholar

  • [309] Zhang, Y. W., Wang, L., Tian, J. Q., Li, H. L., Luo, Y. L., & Sun, X. P. (2011c). Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. Langmuir, 27, 2170–2175. DOI: 10.1021/la105092f. http://dx.doi.org/10.1021/la105092fCrossrefGoogle Scholar

  • [310] Zhang, X., Zhi, W. X., Yan, B., & Xu, X. X. (2012). α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity. Powder Technology, 221, 177–182. DOI: 10.1016/j.powtec.2011.12.064. http://dx.doi.org/10.1016/j.powtec.2011.12.064Google Scholar

  • [311] Zhao, C. J., Zhao, Q. T., Zhao, Q. Z., Qiu, J. R., Zhu, C. S., & Guo, S. W. (2007). Preparation and optical properties of Ag/PPy composite colloids. Journal of Photochemistry and Photobiology A: Chemistry, 187, 146–151. DOI: 10.1016/j.jphotochem.2006.10.006. http://dx.doi.org/10.1016/j.jphotochem.2006.10.006CrossrefGoogle Scholar

  • [312] Zhao, B. B., & Nan, Z. D. (2012a). Enhancement of electrical conductivity by incorporation of Ag into core/shell structure of Fe3O4/Ag/PPy/NPs. Materials Science and Engineering: C, 32, 804–810. DOI: 10.1016/j.msec.2012.01.030. http://dx.doi.org/10.1016/j.msec.2012.01.030CrossrefGoogle Scholar

  • [313] Zhao, B. B., & Nan, Z. D. (2012b). Formation of self-assembled nanofiber-like Ag@PPy core/shell structures induced by SDBS. Materials Science and Engineering: C, 32, 1971–1975. DOI: 10.1016/j.msec.2012.05.029. http://dx.doi.org/10.1016/j.msec.2012.05.029CrossrefGoogle Scholar

  • [314] Zhao, Y. C., Tomšík, E., Wang, J. X., Morávková, Z., Zhigunov, A., Stejskal, J., & Trchová, M. (2013). Self-assembly of aniline oligomers. Chemistry — An Asian Journal, 8, 129–137. DOI: 10.1002/asia.201200836. http://dx.doi.org/10.1002/asia.201200836CrossrefGoogle Scholar

  • [315] Zhou, H. H., Ning, X. H., Li, S. L., Chen, J. H., & Kuang, Y. F. (2006). Synthesis of polyaniline-silver nanocomposite film by unsymmetrical square wave current method. Thin Solid Films, 510, 164–168. DOI: 10.1016/j.tsf.2005.12.310. http://dx.doi.org/10.1016/j.tsf.2005.12.310CrossrefGoogle Scholar

  • [316] Zhou, Z., He, D. L., Guo, Y. N., Cui, Z. D., Wang, M. H., Li, G. X., & Yang, R. H. (2009). Fabrication of polyaniline-silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems. Thin Solid Films, 517, 6767–6771. DOI: 10.1016/j.tsf.2009.05.043. http://dx.doi.org/10.1016/j.tsf.2009.05.043CrossrefGoogle Scholar

  • [317] Zięba, A., Drelinkiewicz, A., Konyushenko, E. N., & Stejskal, J. (2010). Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterifacion of triglycerides and esterification of fatty acids with methanol. Applied Catalysis A: General, 383, 169–181. DOI: 10.1016/j.apcata.2010.05.042. http://dx.doi.org/10.1016/j.apcata.2010.05.042CrossrefGoogle Scholar

  • [318] Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011a). Lamellar-structured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703. http://dx.doi.org/10.1002/asia.201000703CrossrefGoogle Scholar

  • [319] Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011b). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t. http://dx.doi.org/10.1021/ma102772tCrossrefGoogle Scholar

About the article

Published Online: 2013-05-03

Published in Print: 2013-08-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-012-0304-6.

Export Citation

© 2012 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in