Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

See all formats and pricing
More options …
Volume 67, Issue 8 (Aug 2013)


Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials

Gordana Ćirić-Marjanović / Igor Pašti / Nemanja Gavrilov / Aleksandra Janošević / Slavko Mentus
  • Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158, Belgrade, Serbia
  • Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000, Belgrade, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-03 | DOI: https://doi.org/10.2478/s11696-013-0312-1


Polyaniline (PANI) and polypyrrole (PPY) undergo carbonisation in an inert/reduction atmosphere and vacuum, yielding different nitrogen-containing carbon materials. This contribution reviews various procedures for the carbonisation of PANI and PPY precursors, and the characteristics of obtained carbonised PANI (C-PANI) and carbonised PPY (C-PPY). Special attention is paid to the role of synthetic procedures in tailoring the formation of C-PANI and C-PPY nanostructures and nanocomposites. The review considers the importance of scanning and transmission electron microscopies, XPS, FTIR, Raman, NMR, and EPR spectroscopies, electrical conductivity and adsorption/desorption measurements, XRD, and elemental analyses in the characterisation of C-PANIs and C-PPYs. The application of C-PANI and C-PPY in various fields of modern technology is also reviewed.

Keywords: polyaniline; polypyrrole; carbonisation; N-containing carbon materials

  • [1] Bae, J. (2011). Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery. Journal of Solid State Chemistry, 184, 1749–1755. DOI: 10.1016/j.jssc.2011.05.012. http://dx.doi.org/10.1016/j.jssc.2011.05.012CrossrefGoogle Scholar

  • [2] Bae, J., & Jang, J. (2012). Fabrication of carbon nanotubes from conducting polymer precursor as field emitter. Journal of Industrial and Engineering Chemistry, 18, 1921–1924. DOI: 10.1016/j.jiec.2012.05.004. http://dx.doi.org/10.1016/j.jiec.2012.05.004CrossrefGoogle Scholar

  • [3] Baranauskas, V., Ceragioli, H. J., Peterlevitz, A. C., & Quispe, J. C. R. (2007). Properties of carbon nanostructures prepared by polyaniline carbonization. Journal of Physics: Conference Series, 61, 71–74. DOI: 10.1088/1742-6596/61/1/015. http://dx.doi.org/10.1088/1742-6596/61/1/015CrossrefGoogle Scholar

  • [4] Cao, Y. L., Xiao, L. F., Sushko, M. L., Wang, W., Schwenzer, B., Xiao, J., Nie, Z. M., Saraf, L. V., Yang, Z. G., & Liu, J. (2012). Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters, 12, 3783–3787. DOI: 10.1021/nl3016957. http://dx.doi.org/10.1021/nl3016957CrossrefGoogle Scholar

  • [5] Chen, X.W., Hong, L., Chen, X. L., Yeong, W. H. A., & Chan, W. K. I. (2011a). Aliphatic chain grafted polypyrrole as a precursor of carbon membrane. Journal of Membrane Science, 379, 353–360. DOI: 10.1016/j.memsci.2011.06.007. http://dx.doi.org/10.1016/j.memsci.2011.06.007CrossrefGoogle Scholar

  • [6] Chen, Y. Z., Zhu, H. Y., & Liu, Y. N. (2011b). Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydrogen adsorption. International Journal of Hydrogen Energy, 36, 11738–11745. DOI: 10.1016/j.ijhydene.2011.01.119. http://dx.doi.org/10.1016/j.ijhydene.2011.01.119CrossrefGoogle Scholar

  • [7] Chen, Y. Z., Cao, X. Z., Zhu, H. Y., & Liu, Y. N. (2012a). Preparation of a porous carbon from ferrocene-loaded polyaniline and its use in hydrogen adsorption. International Journal of Hydrogen Energy, 37, 7629–7637. DOI: 10.1016/j.ijhydene.2011.09.107. http://dx.doi.org/10.1016/j.ijhydene.2011.09.107CrossrefGoogle Scholar

  • [8] Chen, L. F., Zhang, X. D., Liang, H. W., Kong, M. G., Guan, Q. F., Chen, P., Wu, Z. Y., & Yu, S. H. (2012b). Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 6, 7092–7102. DOI: 10.1021/nn302147s. http://dx.doi.org/10.1021/nn302147sCrossrefGoogle Scholar

  • [9] Choi, B., Yoon, H., Park, I. S., Jang, J., & Sung, Y. E. (2007). Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation. Carbon, 45, 2496–2501. DOI: 10.1016/j.carbon.2007.08.028. http://dx.doi.org/10.1016/j.carbon.2007.08.028CrossrefGoogle Scholar

  • [10] Ćirić-Marjanović, G. (2010). Polyaniline nanostructures. In A. Eftekhari (Ed.), Nanostructured conductive polymers (pp. 19–98). London, UK: Wiley. DOI: 10.1002/9780470661338.ch2. http://dx.doi.org/10.1002/9780470661338.ch2CrossrefGoogle Scholar

  • [11] Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009). Synthesis and characterization of selfassembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096bCrossrefGoogle Scholar

  • [12] Dai, X. Y., Zhang, X., Meng, Y. F., & Shen, P. K. (2011). Preparation of hollow carbon spheres by carbonization of polystyrene/polyaniline core-shell polymer particles. New Carbon Materials, 26, 389–395. DOI: 10.1016/s1872-5805(11)60089-9. http://dx.doi.org/10.1016/S1872-5805(11)60089-9CrossrefGoogle Scholar

  • [13] Doh, C. H., Kim, S. I., Jeong, K. Y., Jin, B. S., An, K. H., Min, B. C., Moon, S. I., & Yun, M. S. (2006). Synthesis of siliconcarbon by polyaniline coating and electrochemical properties of the Si-C/Li cell. Bulletin of the Korean Chemical Society, 27, 1175–1180. DOI: 10.5012/bkcs.2006.27.8.1175. http://dx.doi.org/10.5012/bkcs.2006.27.8.1175CrossrefGoogle Scholar

  • [14] Dong, H., & Jones, W. E. (2006). Preparation of submicron polypyrrole/poly(methyl methacrylate) coaxial fibers and conversion to polypyrrole tubes and carbon tubes. Langmuir, 22, 11384–11387. DOI: 10.1021/la061399t. http://dx.doi.org/10.1021/la061399tCrossrefGoogle Scholar

  • [15] Dupuis, A. C. (2005). The catalyst in the CCVD of carbon nanotubes—a review. Progress in Material Science, 50, 929–961. DOI: 10.1016/j.pmatsci.2005.04.003. http://dx.doi.org/10.1016/j.pmatsci.2005.04.003CrossrefGoogle Scholar

  • [16] Fuertes, A. B., & Centeno, T. A. (2005). Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. Journal of Materials Chemistry, 15, 1079–1083. DOI: 10.1039/b416007j. http://dx.doi.org/10.1039/b416007jCrossrefGoogle Scholar

  • [17] Ganesan, Y., Peng, C., Lu, Y., Ci, L., Srivastava, A., Ajayan, P. M., & Lou, J. (2010). Effect of nitrogen doping on the mechanical properties of carbon nanotubes. ACS Nano, 4, 7637–7643. DOI: 10.1021/nn102372w. http://dx.doi.org/10.1021/nn102372wCrossrefGoogle Scholar

  • [18] Gavrilov, N., Dašić-Tomić, M., Pašti, I., Ćirić-Marjanović, G., & Mentus, S. (2011a). Carbonized polyaniline nanotubes/nanosheets-supported Pt nanoparticles: Synthesis, characterization and electrocatalysis. Materials Letters, 65, 962–965. DOI: 10.1016/j.matlet.2010.12.044. http://dx.doi.org/10.1016/j.matlet.2010.12.044CrossrefGoogle Scholar

  • [19] Gavrilov, N., Vujković, M., Pašti, I. A., Ćirić-Marjanović, G., & Mentus, S. V. (2011b). Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium. Electrochimica Acta, 56, 9197–9202. DOI: 10.1016/j.electacta.2011.07.134. CrossrefGoogle Scholar

  • [20] Gavrilov, N. M., Pašti, I. A., Ćirić-Marjanović, G., Nikolić, V. M., Kaninski, M. P. M., Miljanić, S. S., & Mentus, S. V. (2012a). Nanodispersed platinum on chemically treated nanostructured carbonized polyaniline as a new PEMFC catalysts. International Journal of Electrochemical Science, 7, 6666–6676. Google Scholar

  • [21] Gavrilov, N., Pašti, I. A., Mitrić, M., Travas-Sejdić, J., Ćirić-Marjanović, G., & Mentus, S. (2012b). Electrocatalysis of oxygen reduction reaction on polyaniline-derived N-doped carbon nanoparticle surfaces in alkaline media. Journal of Power Sources, 220, 306–316. DOI: 10.1016/j.jpowsour.2012.07.119. http://dx.doi.org/10.1016/j.jpowsour.2012.07.119CrossrefGoogle Scholar

  • [22] Gavrilov, N., Pašti, I. A., Vujković, M., Travas-Sejdić, J., Ćirić-Marjanović, G., & Mentus, S. V. (2012c). High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon, 50, 3915–3927. DOI: 10.1016 /j.carbon.2012.04.045. http://dx.doi.org/10.1016/j.carbon.2012.04.045CrossrefGoogle Scholar

  • [23] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191. DOI: 10.1038/nmat1849. http://dx.doi.org/10.1038/nmat1849CrossrefGoogle Scholar

  • [24] Gong, K. P., Du, F., Xia, Z. H., Durstock, M., & Dai, L. M. (2009). Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 323, 760–764. DOI: 10.1126/science.1168049. http://dx.doi.org/10.1126/science.1168049CrossrefGoogle Scholar

  • [25] Gu, N. Y., He, X. H., & Li, Y. (2012). LiFePO4@C cathode materials synthesized from FePO4@PAn composites. Materials Letters, 81, 115–118. DOI: 10.1016/j.matlet.2012.05.003. http://dx.doi.org/10.1016/j.matlet.2012.05.003CrossrefGoogle Scholar

  • [26] Guo, Y. X., He, J. P., Wang, T., Xue, H. R., Hu, Y. Y., Li, G. X., Tang, J., & Sun, X. (2011). Enhanced electrocatalytic activity of platinum supported on nitrogen modified ordered mesoporous carbon. Journal of Power Sources, 196, 9299–9307. DOI: 10.1016/j.jpowsour.2011.07.073. http://dx.doi.org/10.1016/j.jpowsour.2011.07.073CrossrefGoogle Scholar

  • [27] Han, C. C., Lee, J. T., Yang, R. W., Chang, H., & Han, C. H. (1999). A new and easy method for making well-organized micrometer-sized carbon tubes and their regularly assembled structures. Chemistry of Materials, 11, 1806–1813. DOI: 10.1021/cm990032p. http://dx.doi.org/10.1021/cm990032pCrossrefGoogle Scholar

  • [28] Han, C. C., Lee, J. T., & Chang, H. (2001a). Thermal annealing effects on structure and morphology of micrometer-sized carbon tubes. Chemistry of Materials, 13, 4180–4186. DOI: 10.1021/cm010333a. http://dx.doi.org/10.1021/cm010333aCrossrefGoogle Scholar

  • [29] Han, C. C., Lee, J. T., Yang, R. W., & Han, C. H. (2001b). Formation mechanism of micrometer-sized carbon tubes. Chemistry of Materials, 13, 2656–2665. DOI: 10.1021/cm010141f. http://dx.doi.org/10.1021/cm010141fCrossrefGoogle Scholar

  • [30] Han, C. C., Bai, M. Y., Yang, K. F., Lee, Y. S., & Lin, C. W. (2008). A novel method for making highly dispersible conducting polymer and concentric graphitic carbon nanospheres based on an undoped and functionalized polyaniline. Journal of Materials Chemistry, 18, 3918–3925. DOI: 10.1039/b804131h. http://dx.doi.org/10.1039/b804131hCrossrefGoogle Scholar

  • [31] Hellgren, N., Johansson, M. P., Broitman, E., Hultman, L., & Sundgren, J. E. (1999). Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering. Physical Review B, 59, 5162–5169. DOI: 10.1103/PhysRevB.59.5162. http://dx.doi.org/10.1103/PhysRevB.59.5162CrossrefGoogle Scholar

  • [32] Ho, K. S., Han, Y. K., Tuan, Y. T., Huang, Y. J., Wang, Y. Z., Ho, T. H., Hsieh, T. H., Lin, J. J., & Lin, S. C. (2009). Formation and degradation mechanism of a novel nanofi-brous polyaniline. Synthetic Metals, 159, 1202–1209. DOI: 10.1016/j.synthmet.2009.02.047. http://dx.doi.org/10.1016/j.synthmet.2009.02.047CrossrefGoogle Scholar

  • [33] Hsu, C. H., Wu, H. M., & Kuo, P. L. (2010). Excellent performance of Pt0 on high nitrogen-containing carbon nanotubes using aniline as nitrogen/carbon source, dispersant and stabilizer. Chemical Communications, 46, 7628–7630. DOI: 10.1039/c0cc02018d. http://dx.doi.org/10.1039/c0cc02018dCrossrefGoogle Scholar

  • [34] Hsu, C. H., & Kuo, P. L. (2012). The use of carbon nanotubes coated with a porous nitrogen-doped carbon layer with embedded Pt for the methanol oxidation reaction. Journal of Power Sources, 198, 83–89. DOI: 10.1016/j.jpowsour.2011.10.012. http://dx.doi.org/10.1016/j.jpowsour.2011.10.012CrossrefGoogle Scholar

  • [35] Hu, J. T., Yang, P. D., & Lieber, C. M. (1998). Nitrogendriven sp3 to sp2 transformation in carbon nitride materials. Physical Review B, 57, R3185–R3188. DOI: 10.1103/Phys-RevB.57.R3185. http://dx.doi.org/10.1103/PhysRevB.57.R3185CrossrefGoogle Scholar

  • [36] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a0CrossrefGoogle Scholar

  • [37] Jang, J., Oh, J. H., & Stucky, G. D. (2002). Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angewandte Chemie International Edition, 41, 4016–4019. DOI: 10.1002/1521-3773(20021104)41:21〈4016::AIDANIE4016〉3.0.CO;2-G. http://dx.doi.org/10.1002/1521-3773(20021104)41:21<4016::AID-ANIE4016>3.0.CO;2-GCrossrefGoogle Scholar

  • [38] Jang, J. S., & Yoon, H. S. (2003). Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Advanced Materials, 15, 2088–2091. DOI: 10.1002/adma.200305296. http://dx.doi.org/10.1002/adma.200305296CrossrefGoogle Scholar

  • [39] Jang, J., & Yoon, H. (2005). Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small, 1, 1195–1199. DOI: 10.1002/smll.200500237. http://dx.doi.org/10.1002/smll.200500237CrossrefGoogle Scholar

  • [40] Janošević, A., Pašti, I., Gavrilov, N., Mentus, S., Ćirić-Marjanović, G., Krstić, J., & Stejskal, J. (2011). Micro/ mesoporous conducting carbonized polyaniline 5-sulfosalicylate nanorods/nanotubes: Synthesis, characterization and electrocatalysis. Synthetic Metals, 161, 2179–2184. DOI: 10.1016/j.synthmet.2011.08.028. http://dx.doi.org/10.1016/j.synthmet.2011.08.028CrossrefGoogle Scholar

  • [41] Janošević, A., Pašti, I., Gavrilov, N., Mentus, S., Krstić, J., Mitrić, M., Travas-Sejdić, J., & Ćirić-Marjanović, G. (2012). Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties. Microporous and Mesoporous Materials, 152, 50–57. DOI: 10.1016/j.micromeso.2011.12.002. http://dx.doi.org/10.1016/j.micromeso.2011.12.002CrossrefGoogle Scholar

  • [42] Jeon, S. S., Han, W. B., An, H. H., Im, S. S., & Yoon, C. S. (2011). Polypyrrole-modified graphitized carbon black as a catalyst support for methanol oxidation. Applied Catalysis A: General, 409–410, 156–161. DOI: 10.1016/j.apcata.2011.09.044. http://dx.doi.org/10.1016/j.apcata.2011.09.044CrossrefGoogle Scholar

  • [43] Ji, L. W., Yao, Y. F., Toprakci, O., Lin, Z., Liang, Y. Z., Shi, Q., Medford, A. J., Millns, C. R., & Zhang, X. W. (2010). Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. Journal of Power Sources, 195, 2050–2056. DOI: 10.1016/j.jpowsour.2009.10.021. http://dx.doi.org/10.1016/j.jpowsour.2009.10.021CrossrefGoogle Scholar

  • [44] Jiang, Z. Q., & Jiang, Z. J. (2012). Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source. Journal of Alloys and Compounds, 537, 308–317. DOI: 10.1016/j.jallcom.2012.05.066. http://dx.doi.org/10.1016/j.jallcom.2012.05.066CrossrefGoogle Scholar

  • [45] Jin, C., Nagaiah, T. C., Xia, W., Spliethoff, B., Wang, S. S., Bron, M., Schuhmann, W., & Muhler, M. (2010). Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2, 981–987. DOI: 10.1039/b9nr00405j. http://dx.doi.org/10.1039/b9nr00405jCrossrefGoogle Scholar

  • [46] Kim, H., Jung, J. C., Park, D. R., Baeck, S. H., & Song, I. K. (2007). Preparation of H5PMo10V2O40 (PMo10V2) catalyst immobilized on nitrogen-containing mesoporous carbon (N-MC) and its application to the methacrolein oxidation. Applied Catalysis A: General, 320, 159–165. DOI: 10.1016/j.apcata.2007.01.034. http://dx.doi.org/10.1016/j.apcata.2007.01.034CrossrefGoogle Scholar

  • [47] Kim, H., Jung, J. C., Park, D. R., Lee, H., Lee, J., Lee, S. H., Baeck, S. H., Lee, K. Y., Yi, J., & Song, I. K. (2008). Preparation of H5PMo10V2O40 catalyst immobilized on nitrogen-containing mesostructured cellular foam carbon (N-MCF-C) and its application to the vapor-phase oxidation of benzyl alcohol. Catalysis Today, 132, 58–62. DOI: 10.1016/j.cattod.2007.12.004. http://dx.doi.org/10.1016/j.cattod.2007.12.004CrossrefGoogle Scholar

  • [48] Kim, H., Park, D. R., Park, S., Jung, J. C., Lee, S. B., & Song, I. K. (2009). Preparation, characterization, and catalytic activity of H5PMo10V2O40 immobilized on nitrogen-containing mesoporous carbon (PMo10V2/N-MC) for selective conversion of methanol to dimethoxymethane. Korean Journal of Chemical Engineering, 26, 660–665. DOI: 10.1007/s11814-009-0110-1. http://dx.doi.org/10.1007/s11814-009-0110-1CrossrefGoogle Scholar

  • [49] Kim, K. S., & Park, S. J. (2011). Synthesis of carboncoated graphene electrodes and their electrochemical performance. Electrochimica Acta, 56, 6547–6553. DOI: 10.1016/j. electacta.2011.04.092. http://dx.doi.org/10.1016/j.electacta.2011.04.092CrossrefGoogle Scholar

  • [50] Kim, K. S., & Park, S. J. (2012a). Easy synthesis of polyanilinebased mesoporous carbons and their high electrochemical performance. Microporous and Mesoporous Materials, 163, 140–146. DOI: 10.1016/j.micromeso.2012.04.047. http://dx.doi.org/10.1016/j.micromeso.2012.04.047CrossrefGoogle Scholar

  • [51] Kim, K. S., & Park, S. J., (2012b). Synthesis of microporous carbon nanotubes by templating method and their high electrochemical performance. Electrochimica Acta, 78, 147–153. DOI: 10.1016/j.electacta.2012.05.116. http://dx.doi.org/10.1016/j.electacta.2012.05.116CrossrefGoogle Scholar

  • [52] Kroto, H. W, Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–163. DOI: 10.1038/318162a0. http://dx.doi.org/10.1038/318162a0CrossrefGoogle Scholar

  • [53] Kuo, P. L., & Hsu, C. H. (2011). Stabilization of embedded Pt nanoparticles in the novel nanostructure carbon materials. ACS Applied Materials & Interfaces, 3, 115–118. DOI: 10.1021/am1010089. http://dx.doi.org/10.1021/am1010089CrossrefGoogle Scholar

  • [54] Kuo, P. L., Hsu, C. H., Wu, H. M., Hsu, W. S., & Kuo, D. (2012). Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction. Fuel Cells, 12, 649–655. DOI: 10.1002/fuce.201100130. http://dx.doi.org/10.1002/fuce.201100130CrossrefGoogle Scholar

  • [55] Kuroki, S., Nabae, Y., Chokai, M., Kakimoto, M., & Miyata, S. (2012). Oxygen reduction activity of pyrolyzed polypyrroles studied by 15N solid-state NMR and XPS with principal component analysis. Carbon, 50, 153–162. DOI: 10.1016/j.carbon.2011.08.014. http://dx.doi.org/10.1016/j.carbon.2011.08.014CrossrefGoogle Scholar

  • [56] Kyotani, M., Goto, H., Suda, K., Nagai, T., Matsui, Y., & Akagi, K. (2008). Tubular-shaped nanocarbons prepared from polyaniline synthesized by a self-assembly process and their electrical conductivity. Journal of Nanoscience and Nanotechnology, 8, 1999–2004. DOI: 10.1166/jnn.2008.041. http://dx.doi.org/10.1166/jnn.2008.041CrossrefGoogle Scholar

  • [57] Langer, J. J., & Golczak, S. (2007). Highly carbonized polyaniline micro- and nanotubes. Polymer Degradation and Stability, 92, 330–334. DOI: 10.1016/j.polymdegradstab.2006.07.018. http://dx.doi.org/10.1016/j.polymdegradstab.2006.07.018CrossrefGoogle Scholar

  • [58] Lei, Z. B., An, L. Z., Dang, L. Q., Zhao, M. Y., Shi, J. Y., Bai, S. Y., & Cao, Y. D. (2009a). Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation. Microporous and Mesoporous Materials, 119, 30–38. DOI: 10.1016/j.micromeso.2008.09.033. http://dx.doi.org/10.1016/j.micromeso.2008.09.033CrossrefGoogle Scholar

  • [59] Lei, Z. B., Zhao, M. Y., Dang, L. Q., An, L. Z., Lu, M., Lo, A. Y., Yu, N. Y., & Liu, S. B. (2009b). Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 19, 5985–5995. DOI: 10.1039/b908223a. http://dx.doi.org/10.1039/b908223aCrossrefGoogle Scholar

  • [60] Lezanska, M., Pietrzyk, P., & Sojka, Z. (2010). Investigations into the structure of nitrogen-containing CMK-3 and OCM-0.75 carbon replicas and the nature of surface functional groups by spectroscopic and sorption techniques. The Journal of Physical Chemistry C, 114, 1208–1216. DOI: 10.1021/jp909529x. http://dx.doi.org/10.1021/jp909529xGoogle Scholar

  • [61] Li, C. C., Yin, X. M., Chen, L. B., Li, Q. H., & Wang, T. H. (2009). Porous carbon nanofibers derived from conducting polymer: Synthesis and application in lithium-ion batteries with high-rate capability. The Journal of Physical Chemistry C, 113, 13438–13442. DOI: 10.1021/jp901968v. http://dx.doi.org/10.1021/jp901968vCrossrefGoogle Scholar

  • [62] Li, X. G., Li, A., Huang, M. R., Liao, Y. Z., & Lu, Y. G. (2010a). Efficient and scalable synthesis of pure polypyrrole nanoparticles applicable for advanced nanocomposites and carbon nanoparticles. The Journal of Physical Chemistry C, 114, 19244–19255. DOI: 10.1021/jp107435b. http://dx.doi.org/10.1021/jp107435bCrossrefGoogle Scholar

  • [63] Li, L. M., Liu, E. H., Li, J., Yang, Y. J., Shen, H. J., Huang, Z. Z., & Xiang, X. X. (2010b). Polyaniline-based carbon for a supercapacitor electrode. Acta Physico-Chimica Sinica, 26, 1521–1526. DOI: 10.3866/pku.whxb20100626. CrossrefGoogle Scholar

  • [64] Li, L. M., Liu, E. H., Li, J., Yang, Y. J., Shen, H. J., Huang, Z. Z., Xiang, X. X., & Li, W. (2010c). A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, 195, 1516–1521. DOI: 10.1016/j.jpowsour.2009.09.016. http://dx.doi.org/10.1016/j.jpowsour.2009.09.016CrossrefGoogle Scholar

  • [65] Li, L. M., Liu, E. H., Yang, Y. J., Shen, H. J., Huang, Z. Z., & Xiang, X. X. (2010d). Nitrogen-containing carbons prepared from polyaniline as anode materials for lithium secondary batteries. Materials Letters, 64, 2115–2117. DOI: 10.1016/j.matlet.2010.06.057. http://dx.doi.org/10.1016/j.matlet.2010.06.057CrossrefGoogle Scholar

  • [66] Li, L. M., Liu, E. H., Shen, H. J., Yang, Y. J., Huang, Z. Z., Xiang, X. X., & Tian, Y. Y. (2011). Charge storage performance of doped carbons prepared from polyaniline for supercapacitors. Journal of Solid State Electrochemistry, 15, 175–182. DOI: 10.1007/s10008-010-1087-8. http://dx.doi.org/10.1007/s10008-010-1087-8CrossrefGoogle Scholar

  • [67] Liao, Y. Z., Li, X. G., & Kaner, R. B. (2010). Facile synthesis of water-dispersible conducting polymer nanospheres. ACS Nano, 4, 5193–5202. DOI: 10.1021/nn101378p. http://dx.doi.org/10.1021/nn101378pCrossrefGoogle Scholar

  • [68] Lin, L., Niu, H. J., Zhang, M. L., Song, W., Wang, Z., & Bai, X. D. (2008). Electron field emission from amorphous carbon with N-doped nanostructures pyrolyzed from polyaniline. Applied Surface Science, 254, 7250–7254. DOI: 10.1016/j.apsusc.2008.05.347. http://dx.doi.org/10.1016/j.apsusc.2008.05.347CrossrefGoogle Scholar

  • [69] Liu, H. S., Shi, Z., Zhang, J. L., Zhang, L., & Zhang, J. J. (2009). Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel cell oxygen reduction electrocatalysts. Journal of Materials Chemistry, 19, 468–470. DOI: 10.1039/b819619b. http://dx.doi.org/10.1039/b819619bCrossrefGoogle Scholar

  • [70] Liu, Z. L., Su, F. B., Zhang, X. H., & Tay, S. W. (2011). Preparation and characterization of PtRu nanoparticles supported on nitrogen-doped porous carbon for electrooxidation of methanol. ACS Applied Materials & Interfaces, 3, 3824–3830. DOI: 10.1021/am2010515. http://dx.doi.org/10.1021/am2010515CrossrefGoogle Scholar

  • [71] Liu, Y., Cai, Q., Li, H., & Zhang, J. (2012). Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a templatelike method. Journal of Applied Polymer Science. DOI:10.1002/app.38208. (in press) CrossrefGoogle Scholar

  • [72] Long, J. L., Xie, X.Q., Xu, J., Gu, Q., Chen, L.M., & Wang, X. X. (2012). Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catalysis, 2, 622–631. DOI: 10.1021/cs3000396. http://dx.doi.org/10.1021/cs3000396CrossrefGoogle Scholar

  • [73] Lü, Q. F., He, Z. W., Zhang, J. Y., & Lin, Q. L. (2011). Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline-lignosulfonate composites. Journal of Analytical and Applied Pyrolysis, 92, 152–157. DOI: 10.1016/j.jaap.2011.05.009. http://dx.doi.org/10.1016/j.jaap.2011.05.009CrossrefGoogle Scholar

  • [74] Lü, Q. F., He, Z. W., Zhang, J. Y., & Lin, Q. L. (2012). Fabrication of nitrogen-containing hollow carbon nanospheres by pyrolysis of self-assembled poly(aniline-co-pyrrole). Journal of Analytical and Applied Pyrolysis, 93, 147–152. DOI: 10.1016/j.jaap.2011.10.009. http://dx.doi.org/10.1016/j.jaap.2011.10.009CrossrefGoogle Scholar

  • [75] Ma, Y. W., Zhang, L. R., Li, J. J., Ni, H. T., Li, M., Zhang, J. L., Feng, X. M., Fan, Q. L., Hu, Z., & Huang, W. (2011). Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chinese Science Bulletin, 56, 3583–3589. DOI: 10.1007/s11434-011-4730-6. http://dx.doi.org/10.1007/s11434-011-4730-6CrossrefGoogle Scholar

  • [76] Maiyalagan, T. (2008). Synthesis and electro-catalytic activity of methanol oxidation on nitrogen containing carbon nanotubes supported Pt electrodes. Applied Catalysis B: Environmental, 80, 286–295. DOI: 10.1016/j.apcatb.2007.11.033. http://dx.doi.org/10.1016/j.apcatb.2007.11.033CrossrefGoogle Scholar

  • [77] Maiyalagan, T., & Viswanathan, B. (2005). Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes. Materials Chemistry and Physics, 93, 291–295. DOI: 10.1016/j.matchemphys.2005.03.039. http://dx.doi.org/10.1016/j.matchemphys.2005.03.039CrossrefGoogle Scholar

  • [78] Mališić, M., Janošević, A., Šljukić Paunković, B., Stojković, I., & Ćirić-Marjanović, G. (2012). Exploration of MnO2/carbon composites and their application to simultaneous electroanalytical determination of Pb(II) and Cd(II). Electrochimica Acta, 74, 158–164. DOI: 10.1016/j.electacta.2012.04.049. http://dx.doi.org/10.1016/j.electacta.2012.04.049CrossrefGoogle Scholar

  • [79] Mentus, S., Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2009). Conducting carbonized polyaniline nanotubes. Nanotechnology, 20, 245601. DOI: 10.1088/0957-4484/20/24/245601. http://dx.doi.org/10.1088/0957-4484/20/24/245601CrossrefGoogle Scholar

  • [80] Mi, H. Y., Xu, Y. L., Shi, W., Yoo, H. D., Park, S. J., Park, Y. W., & Oh, S. M. (2011). Polymer-derived carbon nanofiber network supported SnO2 nanocrystals: a superior lithium secondary battery material. Journal of Materials Chemistry, 21, 19302–19309. DOI: 10.1039/c1jm12262b. http://dx.doi.org/10.1039/c1jm12262bCrossrefGoogle Scholar

  • [81] Morávková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2012a). The carbonization of thin polyaniline films. Thin Solid Films, 520, 6088–6094. DOI: 10.1016/j.tsf.2012.05.067. http://dx.doi.org/10.1016/j.tsf.2012.05.067CrossrefGoogle Scholar

  • [82] Morávková, Z., Trchová, M., Tomšík, E., Čechvala, J., & Stejskal, J. (2012b). Enhanced thermal stability of multiwalled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI: 10.1016/j.polymdegradstab.2012.05.019. http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.019CrossrefGoogle Scholar

  • [83] Murai, T., Fukasawa, R., Muraoka, T., Takauchi, H., Gotoh, Y., Takizawa, T., & Matsuse, T. (2009). Electrical conductivity of microwave heated polyaniline nanotubes and possible mechanism of microwave absorption by materials. Journal of Microwave Power & Electromagnetic Energy, 43(1), 34–43. Google Scholar

  • [84] Nxumalo, E. N., & Coville, N. J. (2010). Nitrogen doped carbon nanotubes from organometallic compounds: A review. Materials, 3, 2141–2171. DOI: 10.3390/ma3032141. http://dx.doi.org/10.3390/ma3032141CrossrefGoogle Scholar

  • [85] Park, S. K., Lee, S. Y., Lee, C. S., Kim, H. M., Joo, J., Beag, Y. W., & Koh, S. K. (2004). High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state. Journal of Applied Physics, 96, 1914–1918. DOI: 10.1063/1.1769603. http://dx.doi.org/10.1063/1.1769603CrossrefGoogle Scholar

  • [86] Qie, L., Chen, W. M., Wang, Z. H., Shao, Q. G., Li, X., Yuan, L. X., Hu, X. L., Zhang, W. X., & Huang, Y. H. (2012). Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Advanced Materials, 24, 2047–2050. DOI: 10.1002/adma.201104634. http://dx.doi.org/10.1002/adma.201104634CrossrefGoogle Scholar

  • [87] Qiu, Y. J., Yu, J., Fang, G., Shi, H., Zhou, X. S., & Bai, X. D. (2009). Synthesis of carbon/carbon core/shell nanotubes with a high specific surface area. The Journal of Physical Chemistry C, 113, 61–68. DOI: 10.1021/jp806971e. http://dx.doi.org/10.1021/jp806971eCrossrefGoogle Scholar

  • [88] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.034CrossrefGoogle Scholar

  • [89] Sevilla, M., Mokaya, R., & Fuertes, A. B. (2011a). Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy & Environmental Science, 4, 2930–2936. DOI: 10.1039/c1ee01608c. http://dx.doi.org/10.1039/c1ee01608cCrossrefGoogle Scholar

  • [90] Sevilla, M., Valle-Vigón, P., & Fuertes, A. B. (2011b). NDoped polypyrrole-based porous carbons for CO2 capture. Advanced Functional Materials, 21, 2781–2787. DOI: 10.1002/adfm.201100291. http://dx.doi.org/10.1002/adfm.201100291CrossrefGoogle Scholar

  • [91] Shang, S. M., Yang, X. M., & Tao, X. M. (2009). Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor. Polymer, 50, 2815–2818. DOI: 10.1016/j.polymer.2009.04.041. http://dx.doi.org/10.1016/j.polymer.2009.04.041CrossrefGoogle Scholar

  • [92] Shiraishi, S., & Mamyouda, H. (2008). Electrochemical capacitance of carbonized polyaniline. Carbon, 46, 1110. DOI: 10.1016/j.carbon.2008.04.003. http://dx.doi.org/10.1016/j.carbon.2008.04.003CrossrefGoogle Scholar

  • [93] Šljukić, B., Stojković, I., Cvijetićanin, N., & Ćirić-Marjanović, G. (2011). Hydrogen peroxide sensing at MnO2/carbonized nanostructured polyaniline electrode. Russian Journal of Physical Chemistry A, 85, 2406–2409. DOI: 10.1134/s0036024411130279. http://dx.doi.org/10.1134/S0036024411130279CrossrefGoogle Scholar

  • [94] Stejskal, J., Trchová, M., & Sapurina, I. (2005). Flameretardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 98, 2347–2354. DOI: 10.1002/app.22144. http://dx.doi.org/10.1002/app.22144CrossrefGoogle Scholar

  • [95] Stejskal, J., Trchová, M., Brodinová, J., & Sapurina, I. (2007). Flame retardancy afforded by polyaniline deposited on wood. Journal of Applied Polymer Science, 103, 24–30. DOI: 10.1002/app.23873. http://dx.doi.org/10.1002/app.23873CrossrefGoogle Scholar

  • [96] Stejskal, J., Trchová, M., Hromádková, J., Kovářová, J., & Kalendová, A. (2010). The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polymer International, 59, 875–878. DOI: 10.1002/pi.2858. http://dx.doi.org/10.1002/pi.2858CrossrefGoogle Scholar

  • [97] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.3179CrossrefGoogle Scholar

  • [98] Stephan, O., Ajayan, P. M., Colliex, C., Redlich, Ph., Lambert, J. M., Bernier, P., & Lefin, P. (1994). Doping graphitic and carbon nanotube structures with boron and nitrogen. Science, 266, 1683–1685. DOI: 10.1126/science.266.5191.1683. http://dx.doi.org/10.1126/science.266.5191.1683CrossrefGoogle Scholar

  • [99] Su, F. B., Tian, Z. Q., Poh, C. K., Wang, Z., Lim, S. H., Liu, Z. L., & Lin, J. Y. (2010). Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chemistry of Materials, 22, 832–839. DOI: 10.1021/cm901542w. http://dx.doi.org/10.1021/cm901542wCrossrefGoogle Scholar

  • [100] Su, F. B., Poh, C. K., Chen, J. S., Xu, G. W., Wang, D., Li, Q., Lin J. Y., & Lou, X. W. (2011). Nitrogen-containing micro-porous carbon nanospheres with improved capacitive properties. Energy & Environmental Science, 4, 717–724. DOI: 10.1039/c0ee00277a. http://dx.doi.org/10.1039/c0ee00277aCrossrefGoogle Scholar

  • [101] Tan, Y. M., Xu, C. F., Chen, G. G., Fang, X. L., Zheng, N. F., & Xie, Q. J. (2012). Facile synthesis of manganese-oxidecontaining mesoporous nitrogen-doped carbon for efficient oxygen reduction. Advanced Functional Materials, 22, 4584–4591. DOI: 10.1002/adfm.201201244. http://dx.doi.org/10.1002/adfm.201201244CrossrefGoogle Scholar

  • [102] Trchová, M., Matějka, P., Brodinová, J., Kalendová, A., Prokeš, J., & Stejskal, J. (2006). Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 91, 114–121. DOI: 10.1016/j.polymdegradstab.2005.04.022. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.022CrossrefGoogle Scholar

  • [103] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.001CrossrefGoogle Scholar

  • [104] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-6CrossrefGoogle Scholar

  • [105] Villalpando-Paez, F., Zamudio, A., Elias, A. L., Son, H., Barros, E. B., Chou, S.G., Kim, Y. A., Muramatsu, H., Hayashi, T., Kong, J., Terrones, H., Dresselhaus, G., Endo, M., Terrones, M., & Dresselhaus, M. S. (2006). Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chemical Physics Letters, 424, 345–352. DOI: 10.1016/j.cplett.2006.04.074. http://dx.doi.org/10.1016/j.cplett.2006.04.074CrossrefGoogle Scholar

  • [106] Wang, Y., Su, F. B., Wood, C. D., Lee, J. Y., & Zhao, X. S. (2008a). Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Industrial & Engineering Chemistry Research, 47, 2294–2300. DOI: 10.1021/ie071337d. http://dx.doi.org/10.1021/ie071337dCrossrefGoogle Scholar

  • [107] Wang, Y. G., Wang, Y. R., Hosono, E. J., Wang, K. X., & Zhou, H. S. (2008b). The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie International Edition, 47, 7461–7465. DOI: 10.1002/anie.200802539. http://dx.doi.org/10.1002/anie.200802539CrossrefGoogle Scholar

  • [108] Wang, T., He, J. P., Sun, D., Guo, Y. X., Ma, Y. O., Hu, Y., Li, G. X., Xue, H. R., Tang, J., & Sun, X. (2011a). Synthesis of mesoporous carbon-silica-polyaniline and nitrogencontaining carbon-silica films and their corrosion behavior in simulated proton exchange membrane fuel cells environment. Journal of Power Sources, 196, 9552–9560. DOI: 10.1016/j.jpowsour.2011.07.084. http://dx.doi.org/10.1016/j.jpowsour.2011.07.084CrossrefGoogle Scholar

  • [109] Wang, R. F., Jia, J. C., Li, H., Li, X. S., Wang, H., Chang, Y. M., Kang, J., & Lei, Z. Q. (2011b). Nitrogen-doped carbon coated palygorskite as an efficient electrocatalyst support for oxygen reduction reaction. Electrochimica Acta, 56, 4526–4531. DOI: 10.1016/j.electacta.2011.02.066. http://dx.doi.org/10.1016/j.electacta.2011.02.066CrossrefGoogle Scholar

  • [110] Wu, G., Chen, Z. W., Artyushkova, K., Garzon, F. H., & Zelenay, P. (2008a). Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode. In T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, H. A. Gasteiger, T. Zawodzinski, & C. Lamy (Eds.), ECS Transactions (Vol. 16, pp. 159–170). Pennington, NJ, USA: Electrochemical Society. DOI: 10.1149/1.2981852. http://dx.doi.org/10.1149/1.2981852CrossrefGoogle Scholar

  • [111] Wu, G., Li, D. Y., Dai, C. S., Wang, D. L., & Li, N. (2008b). Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation. Langmuir, 24, 3566–3575. DOI: 10.1021/la7029278. http://dx.doi.org/10.1021/la7029278CrossrefGoogle Scholar

  • [112] Wu, G., Swaidan, R., Li, D. Y., & Li, N. (2008c). Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochimica Acta, 53, 7622–7629. DOI: 10.1016/j.electacta.2008.03.082. http://dx.doi.org/10.1016/j.electacta.2008.03.082CrossrefGoogle Scholar

  • [113] Wu, G., Artyushkova, K., Ferrandon, M., Kropf, A. J., Myers, D., & Zelenay, P. (2009). Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Transactions, 25, 1299–1311. DOI: 10.1149/1.3210685. http://dx.doi.org/10.1149/1.3210685CrossrefGoogle Scholar

  • [114] Wu, G., More K. L., Johnston, C. M., & Zelenay, P. (2011). High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 332, 443–447. DOI: 10.1126/science.1200832. http://dx.doi.org/10.1126/science.1200832CrossrefGoogle Scholar

  • [115] Xiang, X. X., Liu, E. H., Huang, Z. Z., Shen, H. J., Tian, Y. Y., Xiao, C. Y., Yang, J. J., & Mao, Z. H. (2011a). Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes. Journal of Solid State Electrochemistry, 15, 2667–2674. DOI: 10.1007/s10008-010-1258-7. http://dx.doi.org/10.1007/s10008-010-1258-7CrossrefGoogle Scholar

  • [116] Xiang, X. X., Liu, E. H., Huang, Z. Z., Shen, H. J., Tian, Y. Y., Xiao, C. Y., Yang, J. J., & Mao, Z. H. (2011b). Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery. Materials Research Bulletin, 46, 1266–1271. DOI: 10.1016/j.materresbull.2011.03.032. http://dx.doi.org/10.1016/j.materresbull.2011.03.032CrossrefGoogle Scholar

  • [117] Xiang, X. X., Huang, Z. Z., Liu, E. H., Shen, H. J., Tian, Y. Y., Xie, H., Wu, Y. H., & Wu, Z. L. (2011c). Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries. Electrochimica Acta, 56, 9350–9356. DOI: 10.1016/j.electacta.2011.08.014. http://dx.doi.org/10.1016/j.electacta.2011.08.014CrossrefGoogle Scholar

  • [118] Xiang, X. X., Liu, E. H., Li, L. M., Yang Y. J., Shen, H. J., Huang, Z. Z., & Tian, Y. Y. (2011d). Activated carbon prepared from polyaniline base by K2CO3 activation for application in supercapacitor electrodes. Journal of Solid State Electrochemistry, 15, 579–585. DOI: 10.1007/s10008-010-1130-9. http://dx.doi.org/10.1007/s10008-010-1130-9CrossrefGoogle Scholar

  • [119] Yan, H., Inokuchi, M., Kinoshita, M., & Toshima, N. (2005). Spontaneously formed polypyrrole microtubes: incandescence and graphitization. Synthetic Metals, 148, 93–98. DOI: 10.1016/j.synthmet.2004.08.036. http://dx.doi.org/10.1016/j.synthmet.2004.08.036CrossrefGoogle Scholar

  • [120] Yan, J., Wei, T., Qiao, W. M., Fan, Z. J., Zhang, L. J., Li, T. Y., & Zhao, Q. K. (2010). A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry Communications, 12, 1279–1282. DOI: 10.1016/j.elecom.2010.06.037. http://dx.doi.org/10.1016/j.elecom.2010.06.037CrossrefGoogle Scholar

  • [121] Yang, C. M., Weidenthaler, C., Spliethoff, B., Mayanna, M., & Schüth, F. (2005). Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chemistry of Materials, 17, 355–358. DOI: 10.1021/cm049164v. http://dx.doi.org/10.1021/cm049164vCrossrefGoogle Scholar

  • [122] Yang, M. M., Cheng, B., Song, H. H., & Chen, X. H. (2010). Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochimica Acta, 55, 7021–7027. DOI: 10.1016/j.electacta.2010.06.077. http://dx.doi.org/10.1016/j.electacta.2010.06.077CrossrefGoogle Scholar

  • [123] Yao, T. J., Cui, T. Y., Wu, J., Chen, Q. Z., Yin, X. J., Cui, F., & Sun, K. N. (2012). Preparation of acid-resistant core/shell Fe3O4@C materials and their use as catalyst supports. Carbon, 50, 2287–2295. DOI: 10.1016/j.carbon.2012.01.048. http://dx.doi.org/10.1016/j.carbon.2012.01.048CrossrefGoogle Scholar

  • [124] Yin, X. G., Huang, K. L., Liu, S. Q., Wang, H. Y., & Wang, H. (2010a). Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Journal of Power Sources, 195, 4308–4312. DOI: 10.1016/j.jpowsour.2010.01.019. http://dx.doi.org/10.1016/j.jpowsour.2010.01.019CrossrefGoogle Scholar

  • [125] Yin, J. B., Xia, X. A., Xiang, L. Q., & Zhao, X. P. (2010b). Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon, 48, 2958–2967. DOI: 10.1016/j.carbon.2010.04.035. http://dx.doi.org/10.1016/j.carbon.2010.04.035CrossrefGoogle Scholar

  • [126] Yin, J. B., Xia, X. A., Xiang, L. Q., & Zhao, X. P. (2011). Temperature effect of electrorheological fluids based on polyaniline derived carbonaceous nanotubes. Smart Materials & Structures, 20, 015002. DOI: 10.1088/0964-1726/20/1/015002. http://dx.doi.org/10.1088/0964-1726/20/1/015002CrossrefGoogle Scholar

  • [127] Yin, J. B., Shui, Y. J., Chang, R. T., & Zhao, X. P. (2012). Graphene-supported carbonaceous dielectric sheets and their electrorheology. Carbon, 50, 5247–5255. DOI: 10.1016/j.carbon.2012.06.062. http://dx.doi.org/10.1016/j.carbon.2012.06.062CrossrefGoogle Scholar

  • [128] Yuan, D. S., Zhou, T. X., Zhou, S. L., Zou, W. J., Mo, S. S., & Xia, N. N. (2011). Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochemistry Communications, 13, 242–246. DOI: 10.1016/j.elecom.2010.12.023. http://dx.doi.org/10.1016/j.elecom.2010.12.023CrossrefGoogle Scholar

  • [129] Zhang, X. Y., & Manohar, S. K. (2006). Microwave synthesis of nanocarbons from conducting polymers. Chemical Communications, 2006, 2477–2479. DOI: 10.1039/b603925a. http://dx.doi.org/10.1039/b603925aCrossrefGoogle Scholar

  • [130] Zhou, Y. K., Neyerlin, K., Olson, T. S., Pylypenko, S., Bult, J., Dinh, H. N., Gennett, T., Shao, Z. P., & O’Hayre, R. (2010). Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy & Environmental Science, 3, 1437–1446. DOI: 10.1039/c003710a. http://dx.doi.org/10.1039/c003710aCrossrefGoogle Scholar

  • [131] Zhou, C. F., Liu, Z. W., Du, X. S., Mitchell, D. R. G., Mai, Y. W., Yan, Y. S., & Ringer, S. (2012). Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Research Letters, 7, 165. DOI: 10.1186/1556-276x-7-165. http://dx.doi.org/10.1186/1556-276X-7-165CrossrefGoogle Scholar

  • [132] Zhu, Y., Li, J. M., Wan, M. X., & Jiang, L. (2009). Electromagnetic functional urchin-like hollow carbon spheres carbonized by polyaniline micro/nanostructures containing FeCl3 as a precursor. European Journal of Inorganic Chemistry, 2009, 2860–2864. DOI: 10.1002/ejic.200900040. http://dx.doi.org/10.1002/ejic.200900040Google Scholar

About the article

Published Online: 2013-05-03

Published in Print: 2013-08-01

Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0312-1.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in