Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers


IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 67, Issue 8 (Aug 2013)

Issues

Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures

Jing Feng
  • Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, 28 Xianning West Road, 710049, Xi’an, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xinli Jing
  • Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, 28 Xianning West Road, 710049, Xi’an, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Li
  • Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, 28 Xianning West Road, 710049, Xi’an, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-03 | DOI: https://doi.org/10.2478/s11696-013-0376-y

Abstract

Aniline chemical oxidative polymerisation (COP), which produces various polyaniline (PANI) and oligoaniline supra-molecular structures, can be regarded as an in situ self-assembly process. This review provides a brief introduction to recent work on the structural characters and self-assembly behaviours of oligomeric aniline chemical oxidation products; it is focused on the relationships between the oligomeric species and morphology of the final products such as PANI nanoparticles, nanofibres/rods, nanotubes or oligoaniline nanosheets, micro/nanospheres in aniline COP systems. Several mechanisms proposed as explanations for the formation of typical supra-molecular structures are discussed in order to illustrate the roles of aniline oligomers. This article concludes with our perspectives on future work remaining to be done to uncover the formation mechanism of supra-molecular structures constructed by aniline chemical oxidation products and their controllable synthesis.

Keywords: polyaniline; aniline oligomer; aniline chemical oxidative polymerisation; self-assembly; supra-molecular structure

  • [1] Basavaiah, K., & Prasada Rao, A. V. (2012). Preparation and characterization of P-TSA doped tetraaniline nanorods via micellar-assisted method. E-Journal of Chemistry, 9, 1175–1180. DOI: 10.1155/2012/679462. http://dx.doi.org/10.1155/2012/679462CrossrefGoogle Scholar

  • [2] Cao, Y., Qiu, J., & Smith, P. (1995). Effect of solvents and co-solvents on the processibility of polyaniline: I. Solubility and conductivity studies. Synthetic Metals, 69, 187–190. DOI: 10.1016/0379-6779(94)02412-r. http://dx.doi.org/10.1016/0379-6779(94)02412-RCrossrefGoogle Scholar

  • [3] Cao, Y., & Mallouk, T. E. (2008). Morphology of templategrown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire rays. Chemistry of Materials, 20, 5260–5265. DOI: 10.1021/cm801028a. http://dx.doi.org/10.1021/cm801028aCrossrefGoogle Scholar

  • [4] Casado, U. M., Quintanilla, R. M., Aranguren, M. I., & Marcovich, N. E. (2012). Composite films based on shape memory polyurethanes and nanostructured polyaniline or cellulose-polyaniline particles. Synthetic Metals, 162, 1654–1664. DOI: 10.1016/j.synthmet.2012.07.020. http://dx.doi.org/10.1016/j.synthmet.2012.07.020CrossrefGoogle Scholar

  • [5] Cataldo, F. (1996). On the polymerization of p-phenylenediamine. European Polymer Journal, 32, 43–50. DOI: 10.1016/ 0014-3057(95)00118-2. http://dx.doi.org/10.1016/0014-3057(95)00118-2CrossrefGoogle Scholar

  • [6] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., & Wei, Y. (2005a). Synthesis of parent aniline tetramer and pentamer and redox properties. Materials Letters, 59, 2446–2450. DOI: 10.1016/j.matlet.2005.03.018. http://dx.doi.org/10.1016/j.matlet.2005.03.018CrossrefGoogle Scholar

  • [7] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., & Wei, Y. (2005b). Synthesis of phenyl-capped aniline heptamer and its UV-vis spectral study. Synthetic Metals, 149, 129–134. DOI: 10.1016/j.synthmet.2004.12.013. http://dx.doi.org/10.1016/j.synthmet.2004.12.013CrossrefGoogle Scholar

  • [8] Chiou, N. R., & Epstein, A. J. (2005). Polyaniline nanofiber prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.200401000CrossrefGoogle Scholar

  • [9] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2006). MNDO-PM3 study of the early stages of the chemical oxidative polymerization of aniline. Collection of Czechoslovak Chemical Communications, 71, 1407–1426. DOI: 10.1135/cccc20061407. http://dx.doi.org/10.1135/cccc20061407CrossrefGoogle Scholar

  • [10] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008a). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506. http://dx.doi.org/10.1002/qua.21506CrossrefGoogle Scholar

  • [11] Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008b). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI: 10.1016/j.synthmet.2008.01.005. http://dx.doi.org/10.1016/j.synthmet.2008.01.005CrossrefGoogle Scholar

  • [12] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008c). The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI: 10.1002/jrs.2007. http://dx.doi.org/10.1002/jrs.2007CrossrefGoogle Scholar

  • [13] Ding, L., Wang, X., & Gregory, R. V. (1999). Thermal properties of chemically synthesized polyaniline (EB) powder. Synthetic Metals, 104, 73–78. DOI: 10.1016/s0379-6779(99)00035-1. http://dx.doi.org/10.1016/S0379-6779(99)00035-1CrossrefGoogle Scholar

  • [14] Ding, H., Shen, J., Wan, M., & Chen, Z. (2008). Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromolecular Chemistry and Physics, 209, 864–871. DOI: 10.1002/macp.200700624. http://dx.doi.org/10.1002/macp.200700624CrossrefGoogle Scholar

  • [15] Ding, Z., Currier, R. P., Zhao, Y., & Yang, D. (2009a). Self-assembled polyaniline nanotubes with rectangular cross sections. Macromolecular Chemistry and Physics, 210, 1600–1606. DOI: 10.1002/macp.200900250. http://dx.doi.org/10.1002/macp.200900250CrossrefGoogle Scholar

  • [16] Ding, H., Wang, G., Yang, M., Luan, Y., Wang, Y., & Yao, X. (2009b). Novel sea urchin-like polyaniline microspheressupported molybdenum catalyst: Preparation, characteristic and functionality. Journal of Molecular Catalysis A: Chemical, 308, 25–31. DOI: 10.1016/j.molcata.2009.03.038. http://dx.doi.org/10.1016/j.molcata.2009.03.038CrossrefGoogle Scholar

  • [17] Ding, Z., Sanchez, T., Labouriau, A., Iyer, S., Larson, T., Currier, R., Zhao, Y., & Dali Yang, D. (2010a). Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration. The Journal of Physical Chemistry B, 114, 10337–10346. DOI: 10.1021/jp102623z. http://dx.doi.org/10.1021/jp102623zCrossrefGoogle Scholar

  • [18] Ding, Z., Yang, D., Currier, R. P., Obrey, S. J., & Zhao, Y. (2010b). Polyaniline morphology and detectable intermediate aggregates. Macromolecular Chemistry and Physics, 211, 627–634. DOI: 10.1002/macp.200900444. http://dx.doi.org/10.1002/macp.200900444CrossrefGoogle Scholar

  • [19] Duić, L., Kraljić, M., & Grigić, S. (2004). Influence of phenylenediamine additions on the morphology and on the catalytic effect of polyaniline. Journal of Polymer Science Part A: Polymer Chemistry, 42, 1599–1608. DOI: 10.1002/pola.11068. http://dx.doi.org/10.1002/pola.11068CrossrefGoogle Scholar

  • [20] Ferreira, D. C., & Temperini, M. L. A. (2010). Raman characterization of oligoaniline self-assembled microspheres. In L. D. Ziegler, & P. M. Champion (Eds.), XXII International Conference on Raman Spectroscopy (AIP Conference Proceedings/Atomic, Molecular, Chemical Physics) (Vol. 1267, pp. 689–690). Melville, NY, USA: American Institute of Physics. Google Scholar

  • [21] Ferreira, D. C., Pires, J. R., & Temperini, M. L. A. (2011). Spectroscopic characterization of oligoaniline microspheres obtained by an aniline-persulfate approach. The Journal of Physical Chemistry B, 115, 1368–1375. DOI: 10.1021/ jp111065m. http://dx.doi.org/10.1021/jp111065mCrossrefGoogle Scholar

  • [22] Gao, J., Li, K., Zhang, W., Wang, C., Wu, Z., Ji, Y., Zhou, Y., Shibata, M., & Yosomiya, R. (1999). Facile synthesis of phenyl-capped oligoanilines using pseudo-high dilution technique. Macromolecular Rapid Communications, 20, 560–563. DOI: 10.1002/(SICI)1521-3927(19991001)20:10〈560::AIDMARC560〉3.0.CO;2-A. http://dx.doi.org/10.1002/(SICI)1521-3927(19991001)20:10<560::AID-MARC560>3.0.CO;2-ACrossrefGoogle Scholar

  • [23] Gao, Y., Li, X., Gong, J., Fan, B., Su, Z., & Qu, L. (2008). Polyaniline nanotubes prepared using fiber mats membrane as the template and their gas-response behavior. The Journal of Physical Chemistry C, 112, 8215–8222. DOI: 10.1021/jp711601f. http://dx.doi.org/10.1021/jp711601fCrossrefGoogle Scholar

  • [24] Gao, C., Ai, M., Li, X., & Xu, Z. (2011). Basic amino acid assisted-fabrication of rectangular nanotube, circular nanotube, and hollow microsphere of polyaniline: Adjusting and controlling effect of pH value. Journal of Polymer Science Part A: Polymer Chemistry, 49, 2173–2182. DOI: 10.1002/pola.24647. http://dx.doi.org/10.1002/pola.24647CrossrefGoogle Scholar

  • [25] Genies, E. M., & Lapkowski, M. (1987). Spectroelectrochemical evidence for an intermediate in the electropolymerization of aniline. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 236, 189–197. DOI: 10.1016/0022-0728(87)88026-9. http://dx.doi.org/10.1016/0022-0728(87)88026-9CrossrefGoogle Scholar

  • [26] Gizdavic-Nikolaidis, M. R., Stanisavljev, D. R., Easteal, A. J., & Zujovic, Z. D. (2010a). Microwave-assisted synthesis of functionalized polyaniline nanostructures with advanced antioxidant properties. The Journal of Physical Chemistry C, 114, 18790–18796. DOI: 10.1021/jp106213m. http://dx.doi.org/10.1021/jp106213mCrossrefGoogle Scholar

  • [27] Gizdavic-Nikolaidis, M. R., Stanisavljev, D. R., Easteal, A. J., & Zujovic, Z. D. (2010b). A rapid and facile synthesis of nanofibrillar polyaniline using microwave radiation. Macromolecular Rapid Communications, 31, 657–661. DOI: 10.1002/marc.200900800. http://dx.doi.org/10.1002/marc.200900800CrossrefGoogle Scholar

  • [28] Gizdavic-Nikolaidis, M. R., Jevremovic, M., Stanisavljev, D. R., & Zujovic, Z. D. (2012). Enhanced microwave synthesis: Fine-tuning of polyaniline polymerization. The Journal of Physical Chemistry C, 116, 3235–3241. DOI: 10.1021/ jp2086939. http://dx.doi.org/10.1021/jp2086939CrossrefGoogle Scholar

  • [29] Gospodinova, N., & Terlemezyan, L. (1998). Conducting polymers prepared by oxidative polymerization: Polyaniline. Progress in Polymer Science, 23, 1443–1484. DOI: 10.1016/s0079-6700(98)00008-2. http://dx.doi.org/10.1016/S0079-6700(98)00008-2CrossrefGoogle Scholar

  • [30] Han, Y. G., Kusunose, T., & Sekino, T. (2009). Facile one-pot synthesis and characterization of novel nanostructured organic dispersible polyaniline. Journal of Polymer Science Part B: Polymer Physics, 47, 1024–1029. DOI: 10.1002/polb.21703. http://dx.doi.org/10.1002/polb.21703CrossrefGoogle Scholar

  • [31] Han, J., Fang, P., Dai, J., & Guo, R. (2012). One-pot surfactantless route to polyaniline hollow nanospheres with incontinuous multicavities and application for the removal of lead ions from water. Langmuir, 28, 6468–6475. DOI: 10.1021/la300619d. http://dx.doi.org/10.1021/la300619dCrossrefGoogle Scholar

  • [32] He, D., Wu, Y., & Xu, B. Q. (2007). Formation of 2,3-diaminophenazines and their self-assembly into nanobelts in aqueous medium. European Polymer Journal, 43, 3703–3709. DOI: 10.1016/j.eurpolymj.2007.06.038. http://dx.doi.org/10.1016/j.eurpolymj.2007.06.038CrossrefGoogle Scholar

  • [33] He, W., Zhang, W., Li, Y., & Jing, X. (2012). A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synthetic Metals, 162, 1107–1113. DOI: 10.1016/j.synthmet.2012.04.027. http://dx.doi.org/10.1016/j.synthmet.2012.04.027CrossrefGoogle Scholar

  • [34] Ho, K. S., Han, Y. K., Tuan, Y. T., Huang, Y. J., Wang, Y. Z., Ho, T. H., Hsieh, T. H., Lin, J. J., & Lin, S. C. (2009). Formation and degradation mechanism of a novel nanofibrous polyaniline. Synthetic Metals, 159, 1202–1209. DOI: 10.1016/j.synthmet.2009.02.047. http://dx.doi.org/10.1016/j.synthmet.2009.02.047CrossrefGoogle Scholar

  • [35] Hu, X., Bao, H., Wang, P., Jin, S., & Gu, Z. (2012). Mechanism of formation of polyaniline flakes with high degree of crystallization using a soft template in the presence of cetyltrimethylammonium bromide. Polymer International, 61, 768–773. DOI: 10.1002/pi.4137. http://dx.doi.org/10.1002/pi.4137CrossrefGoogle Scholar

  • [36] Huang, J., & Wan, M. (1999). Polyaniline doped with different sulfonic acids by in situ doping polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 37, 1277–1284. DOI: 10.1002/(sici)1099-0518(19990501)37:9〈1277::aidpola7〉3.0.co;2-a. http://dx.doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1277::AID-POLA7>3.0.CO;2-ACrossrefGoogle Scholar

  • [37] Huang, J., Virji, S., Weiller, B. H., & Kaner, R. B. (2003). Polyaniline nanofibers: Facile synthesis and chemical sensors. Journal of the American Chemical Society, 125, 314–315. DOI: 10.1021/ja028371y. http://dx.doi.org/10.1021/ja028371yCrossrefGoogle Scholar

  • [38] Huang, J., & Kaner, R. B. (2004a). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754. http://dx.doi.org/10.1021/ja0371754CrossrefGoogle Scholar

  • [39] Huang, J. X., & Kaner, R. B. (2004b). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821. DOI: 10.1002/anie.200460616. http://dx.doi.org/10.1002/anie.200460616CrossrefGoogle Scholar

  • [40] Huang, J. (2006). Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry, 78, 15–27. DOI: 10.1351/pac200678010015. http://dx.doi.org/10.1351/pac200678010015CrossrefGoogle Scholar

  • [41] Huang, J., & Kaner, R. B. (2006). The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, 367–376. DOI: 10.1039/b510956f. http://dx.doi.org/10.1039/b510956fCrossrefGoogle Scholar

  • [42] Huang, J. Y., Ding, F., Jiao, K., & Yakobson, B. I. (2007). Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. Physical Review Letters, 99, 175503. DOI: 10.1103/physrevlett.99.175503. http://dx.doi.org/10.1103/PhysRevLett.99.175503CrossrefGoogle Scholar

  • [43] Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.016CrossrefGoogle Scholar

  • [44] Huang, Y. F., & Lin, C. W. (2010). Exploration of the morphological transition phenomenon of polyaniline from microspheres to nanotubes in acid-free aqueous 1-propanol solution in a single polymerization process. Polymer International, 59, 1226–1232. DOI: 10.1002/pi.2852. http://dx.doi.org/10.1002/pi.2852CrossrefGoogle Scholar

  • [45] Janošević, A., Pašti, I., Gavrilov, N., Mentus, S., Ćirić-Marjanović, G., Krstić, J., & Stejskal, J. (2011). Micro/mesoporous conducting carbonized polyaniline 5-sulfosalicylate nanorods/nanotubes: Synthesis, characterization and electrocatalysis. Synthetic Metals, 161, 2179–2184. DOI: 10.1016/j.synthmet.2011.08.028. http://dx.doi.org/10.1016/j.synthmet.2011.08.028CrossrefGoogle Scholar

  • [46] Jiang, H., Sun, X., Huang, M., Wang, Y., Li, D., & Dong, S. (2006). Rapid self-assembly of oligo(o-phenylenediamine) into one-dimensional structures through a facile reprecipitation route. Langmuir, 22, 3358–3361. DOI: 10.1021/la0530 91s. http://dx.doi.org/10.1021/la053091sCrossrefGoogle Scholar

  • [47] Jiang, Z., Cheng, Q., Yan, Y., Zhang, L., & Li, C. (2012). Synthesis, characterization and electrochemical capacitance of urchin-like hierarchical polyaniline microspheres. Journal of Macromolecular Science Part B: Physics, 51, 897–905. DOI: 10.1080/00222348.2011.610251. http://dx.doi.org/10.1080/00222348.2011.610251CrossrefGoogle Scholar

  • [48] Jiao, L., Zhang, L., Wang, X., Diankov, G., & Dai, H. (2009). Narrow graphene nanoribbons from carbon nanotubes. Nature, 458, 877–880. DOI: 10.1038/nature07919. http://dx.doi.org/10.1038/nature07919CrossrefGoogle Scholar

  • [49] Jin, E., Liu, N., Lu, X., & Zhang, W. (2007). Novel micro/nanostructures of polyaniline in the presence of different amino acids via a self-assembly process. Chemistry Letters, 36, 1288–1289. DOI: 10.1246/cl.2007.1288. http://dx.doi.org/10.1246/cl.2007.1288CrossrefGoogle Scholar

  • [50] Jin, E., Lu, X., Bian, X., Kong, L., Zhang, W., & Wang, C. (2010). Unique tetragonal starlike polyaniline microstructure and its application in electrochemical biosensing. Journal of Materials Chemistry, 20, 3079–3083. DOI: 10.1039/b925753e. http://dx.doi.org/10.1039/b925753eCrossrefGoogle Scholar

  • [51] Kong, L., Lu, X., Jin, E., Jiang, S., Wang, C., & Zhang, W. (2009). Templated synthesis of polyaniline nanotubes with Pd nanoparticles attached onto their inner walls and its catalytic activity on the reduction of p-nitroanilinum. Composites Science and Technology, 69, 561–566. DOI: 10.1016/j.compscitech.2008.11.021. http://dx.doi.org/10.1016/j.compscitech.2008.11.021CrossrefGoogle Scholar

  • [52] Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899. http://dx.doi.org/10.1002/pi.1899CrossrefGoogle Scholar

  • [53] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-zCrossrefGoogle Scholar

  • [54] Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872–876. DOI: 10.1038/nature07872. http://dx.doi.org/10.1038/nature07872CrossrefGoogle Scholar

  • [55] Kříž, J., Starovoytova, L., Trchová, M., Konyushenko, E. N., & Stejskal, J. (2009). NMR investigation of aniline oligomers produced in the early stages of oxidative polymerization of aniline. The Journal of Physical Chemistry B, 113, 6666–6673. DOI: 10.1021/jp9007834. http://dx.doi.org/10.1021/jp9007834CrossrefGoogle Scholar

  • [56] Kulszewicz-Bajer, I., Róźalska, I., & Kuryłlek, M. (2004). Synthesis and spectroscopic properties of aniline tetramers. Comparative studies. New Journal of Chemistry, 28, 669–675. DOI: 10.1039/b311096f. http://dx.doi.org/10.1039/b311096fCrossrefGoogle Scholar

  • [57] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2009a). Polyaniline “nanotube” self-assembly: The stage of granular agglomeration on nanorod templates. Macromolecular Rapid Communications, 30, 1663–1668. DOI: 10.1002/marc.200900244. http://dx.doi.org/10.1002/marc.200900244CrossrefGoogle Scholar

  • [58] Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A., & Travas-Sejdic, J. (2009b). Morphological evolution of selfassembled polyaniline nanostuctures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a. http://dx.doi.org/10.1021/cm803447aCrossrefGoogle Scholar

  • [59] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2010). Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 35, 1403–1419. DOI: 10.1016/j.progpolymsci.2010.08.002. http://dx.doi.org/10.1016/j.progpolymsci.2010.08.002CrossrefGoogle Scholar

  • [60] Lee, D. C., Cao, B., Jang, K., & Forster, P. M. (2010). Selfassembly of halogen substituted phenazines. Journal of Materials Chemistry, 20, 867–873. DOI: 10.1039/b917601b. http://dx.doi.org/10.1039/b917601bCrossrefGoogle Scholar

  • [61] Leng, W., Zhou, S., & Wu, L. (2011). Fabrication of polyaniline: Nail/spindle-shaped morphology. Macromolecular Chemistry and Physics, 212, 1900–1909. DOI: 10.1002/macp.201100150. http://dx.doi.org/10.1002/macp.201190038CrossrefGoogle Scholar

  • [62] Leng, W., Zhou, S., You, B., & Wu, L. (2012). Controllable synthesis of aniline oligomers into uniform, dispersed cross and needle morphologies. Journal of Colloid and Interface Science, 374, 331–338. DOI: 10.1016/j.jcis.2012.02.018. http://dx.doi.org/10.1016/j.jcis.2012.02.018CrossrefGoogle Scholar

  • [63] Li, W., & Wang, H. L. (2004). Oligomer-assisted synthesis of chiral polyaniline nanofibers. Journal of the American Chemical Society, 126, 2278–2279. DOI: 10.1021/ja039672q. http://dx.doi.org/10.1021/ja039672qCrossrefGoogle Scholar

  • [64] Li, G., Martinez, C., Janata, J., Smith, J. A., Josowicz, M., & Semancik, S. (2004). Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films. Electrochemical and Solid-State Letters, 7, H44–H47. DOI: 10.1149/1.1795053. http://dx.doi.org/10.1149/1.1795053CrossrefGoogle Scholar

  • [65] Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n. http://dx.doi.org/10.1021/ja056609nCrossrefGoogle Scholar

  • [66] Li, G., Zhang, C., & Peng, H. (2008a). Facile synthesis of self-assembled polyaniline nanodisks. Macromolecular Rapid Communications, 29, 63–67. DOI: 10.1002/marc.200700584. http://dx.doi.org/10.1002/marc.200700584CrossrefGoogle Scholar

  • [67] Li, G., Zhang, C., Peng, H., Chen, K., & Zhang, Z. (2008b). Hollow self-doped polyaniline micro/nanostructures: Microspheres, aligned pearls, and nanotubes. Macromolecular Rapid Communications, 29, 1954–1958. DOI: 10.1002/marc.200800501. http://dx.doi.org/10.1002/marc.200800501CrossrefGoogle Scholar

  • [68] Li, Y., & Jing, X. (2009). Morphology control of chemically prepared polyaniline nanostructures: Effects of mass transfer. Reactive & Functional Polymers, 69, 797–807. DOI: 10.1016/j.reactfunctpolym.2009.06.009. http://dx.doi.org/10.1016/j.reactfunctpolym.2009.06.009CrossrefGoogle Scholar

  • [69] Li, Y., Wang, Y., Wu, D., & Jing, X. (2009a). Effects of ultrasonic irradiation on the morphology of chemically prepared polyaniline nanofibers. Journal of Applied Polymer Science, 113, 868–875. DOI: 10.1002/app.29970. http://dx.doi.org/10.1002/app.29970CrossrefGoogle Scholar

  • [70] Li, W., Hoa, N. D., Cho, Y., Kim, D., & Kim, J. S. (2009b). Nanofibers of conducting polyaniline for aromatic organic compound sensor. Sensors and Actuators B: Chemical, 143, 132–138. DOI: 10.1016/j.snb.2009.09.006. http://dx.doi.org/10.1016/j.snb.2009.09.006CrossrefGoogle Scholar

  • [71] Li, X., Gao, Y., Gong, J., Zhang, L., & Qu, L. (2009c). Polyaniline/ Ag composite nanotubes prepared through UV rays irradiation via fiber template approach and their NH3 gas sensitivity. The Journal of Physical Chemistry C, 113, 69–73. DOI: 10.1021/jp807535v. http://dx.doi.org/10.1021/jp807535vCrossrefGoogle Scholar

  • [72] Li, Y., Wang, Y., Jing, X., & Zhu, R. (2011). Early stage pH profile: the key factor controlling the construction of polyaniline micro/nanostructures. Journal of Polymer Research, 18, 2119–2131. DOI: 10.1007/s10965-011-9622-6. http://dx.doi.org/10.1007/s10965-011-9622-6CrossrefGoogle Scholar

  • [73] Li, Y., He, W., Feng, J., & Jing, X. (2012). Self-assembly of aniline oligomers in aqueous medium. Colloid and Polymer Science, 290, 817–828. DOI: 10.1007/s00396-012-2597-y. CrossrefGoogle Scholar

  • [74] Lin, C. W., & Huang, Y. F. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.016CrossrefGoogle Scholar

  • [75] Lin, Q., Li, Y., & Yang, M. (2012). Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers. Analytica Chimica Acta, 748, 73–80. DOI: 10.1016/j.aca.2012.08.041. http://dx.doi.org/10.1016/j.aca.2012.08.041CrossrefGoogle Scholar

  • [76] Liu, C., Hayashi, K., & Toko, K. (2011). Template-free deposition of polyaniline nanostructures on solid substrates with horizontal orientation. Macromolecules, 44, 2212–2219. DOI: 10.1021/ma1023878. http://dx.doi.org/10.1021/ma1023878CrossrefGoogle Scholar

  • [77] Liu, P., Qiu, J., Wang, X., & Wu, X. (2012). Facile preparation of polyaniline nanosheets via chemical oxidative polymerization in saturated NaCl aqueous solution for supercapacitors. International Journal of Electrochemical Science, 7, 6134–6141. Google Scholar

  • [78] Luo, C., Peng, H., Zhang, L., Lu, G. L., Wang, Y., & Travas-Sejdic, J. (2011). Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules, 44, 6899–6907. DOI: 10.1021/ma201350m. http://dx.doi.org/10.1021/ma201350mCrossrefGoogle Scholar

  • [79] MacDiarmid, A. G., Chiang, J. C., Richter, A. F., & Epstein, A. J. (1987). Polyaniline: A new concept in conducting polymers. Synthetic Metals, 18, 285–290. DOI: 10.1016/0379-6779(87)90893-9. http://dx.doi.org/10.1016/0379-6779(87)90893-9CrossrefGoogle Scholar

  • [80] Mohilner, D. M., Adams, R. N., & Argersinger, W. J. (1962). Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. Journal of the American Chemical Society, 84, 3618–3622. DOI: 10.1021/ja00878a003. http://dx.doi.org/10.1021/ja00878a003CrossrefGoogle Scholar

  • [81] Neelgund, G. M., & Oki, A. (2011). A facile method for the synthesis of polyaniline nanospheres and the effect of doping on their electrical conductivity. Polymer International, 60, 1291–1295. DOI: 10.1002/pi.3068. CrossrefGoogle Scholar

  • [82] Nemzer, L. R., Schwartz, A., & Epstein, A. J. (2010). Enzyme entrapment in reprecipitated polyaniline nanoand microparticles. Macromolecules, 43, 4324–4330. DOI: 10.1021/ma100112g. http://dx.doi.org/10.1021/ma100112gCrossrefGoogle Scholar

  • [83] Omastová, M., & Mičušík, M. (2012). Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chemical Papers, 66, 392–414. DOI: 10.2478/s11696-011-0120-4. http://dx.doi.org/10.2478/s11696-011-0120-4CrossrefGoogle Scholar

  • [84] Park, J. K., Jeon, S. S., & Im, S. S. (2010). Effect of 4-sulfobenzoic acid monopotassium salt on oligoanilines for inducing polyaniline nanostructures. Polymer, 51, 3023–3030. DOI: 10.1016/j.polymer.2010.05.003. http://dx.doi.org/10.1016/j.polymer.2010.05.003Google Scholar

  • [85] Patil, S. S., Koiry, S. P., Aswal, D. K., Koinkar, P. M., Murakami, R., & More, M. A. (2011). Promising field emission characteristics of polyaniline nanotubes. Journal of the Electrochemical Society, 158, E63–E66. DOI: 10.1149/1.3582525. http://dx.doi.org/10.1149/1.3582525CrossrefGoogle Scholar

  • [86] Patil, S. S., Koiry, S. P., Veerender, P., Aswal, D. K., Gupta, S. K., Joag, D. S., & More, M. A. (2012). Synthesis of vertically aligned polyaniline (PANI) nanofibers, nanotubes on APTMS monolayer and their field emission characteristics. RSC Advances, 2, 5822–5827. DOI: 10.1039/c2ra01294d. http://dx.doi.org/10.1039/c2ra01294dCrossrefGoogle Scholar

  • [87] Peng, H., Soeller, C., & Travas-Sejdic, J. (2007). Novel conducting polymers for DNA sensing. Macromolecules, 40, 909–914. DOI: 10.1021/ma062060g. http://dx.doi.org/10.1021/ma062060gCrossrefGoogle Scholar

  • [88] Petr, A., & Dunsch, L. (1996a). Direct evidence of indamine cation radicals in the anodic oxidation of aniline by in situ ESR spectroscopy. Journal of Electroanalytical Chemistry, 419, 55–59. DOI: 10.1016/s0022-0728(96)04861-9. http://dx.doi.org/10.1016/S0022-0728(96)04861-9CrossrefGoogle Scholar

  • [89] Petr, A., & Dunsch, L. (1996b). Kinetics of the p-aminodiphenylamine radical in organic solution: An electrochemical and electron spin resonance study. The Journal of Physical Chemistry, 100, 4867–4872. DOI: 10.1021/jp952965o. http://dx.doi.org/10.1021/jp952965oCrossrefGoogle Scholar

  • [90] Rajesh, B., Thampi, K. R., Bonard, J. M., Mathieu, H. J., Xanthopoulos, N., & Viswanathan, B. (2004). Nanostructured conducting polyaniline tubules as catalyst support for Pt particles for possible fuel cell applications. Electrochemical and Solid-State Letters, 7, A404–A407. DOI: 10.1149/1.1799955. http://dx.doi.org/10.1149/1.1799955CrossrefGoogle Scholar

  • [91] Ran, F., Tan, Y., Liu, J., Zhao, L., Kong, L., Luo, Y., & Kang, L. (2012). Preparation of hierarchical polyaniline nanotubes based on self-assembly and its electrochemical capacitance. Polymers for Advanced Technologies, 23, 1297–1301. DOI: 10.1002/pat.2048. http://dx.doi.org/10.1002/pat.2048CrossrefGoogle Scholar

  • [92] Ray, A., Asturias, G. E., Kershner, D. L., Richter, A. F., Mac-Diarmid, A. G., & Epstein, A. J. (1989). Polyaniline: Doping, structure and derivatives. Synthetic Metals, 29, E141–E150. DOI: 10.1016/0379-6779(89)90289-0. http://dx.doi.org/10.1016/0379-6779(89)90289-0CrossrefGoogle Scholar

  • [93] Ren, R., Leng, C., & Zhang, S. (2010). A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes. Biosensors and Bioelectronics, 25, 2089–2094. DOI: 10.1016/j.bios.2010.02.006. http://dx.doi.org/10.1016/j.bios.2010.02.006CrossrefGoogle Scholar

  • [94] Rezaei, S. J. T., Bide, Y., & Nabid, M. R. (2011). A new approach for the synthesis of polyaniline microstructures with a unique tetragonal star-like morphology. Synthetic Metals, 161, 1414–1419. DOI: 10.1016/j.synthmet.2011.05.011. http://dx.doi.org/10.1016/j.synthmet.2011.05.011CrossrefGoogle Scholar

  • [95] Róźalska, I., Kułyk, P., & Kulszewicz-Bajer, I. (2004). Linear 1,4-coupled oligoanilines of defined length: preparation and spectroscopic properties. New Journal of Chemistry, 28, 1235–1243. DOI: 10.1039/b404828h. http://dx.doi.org/10.1039/b404828hCrossrefGoogle Scholar

  • [96] Sadek, A. Z., Wlodarski, W., Shin, K., Kaner, R. B., & Kalantar-zadeh, K. (2006). A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology, 17, 4488–4492. DOI: 10.1088/0957-4484/17/17/034. http://dx.doi.org/10.1088/0957-4484/17/17/034CrossrefGoogle Scholar

  • [97] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.2476CrossrefGoogle Scholar

  • [98] Sarma, B., Reddy, L. S., & Nangia, A. (2008). The role of π-stacking in the composition of phloroglucinol and phenazine cocrystals. Crystal Growth and Design, 8, 4546–4552. DOI: 10.1021/cg800585d. http://dx.doi.org/10.1021/cg800585dCrossrefGoogle Scholar

  • [99] Shishov, M. A., Moshnikov, V. A., & Sapurina, I. Y. (2011). Nanostructures of oligoaniline and polyaniline and their properties. Glass Physics and Chemistry, 37, 106–110. DOI: 10.1134/s1087659611010135. http://dx.doi.org/10.1134/S1087659611010135CrossrefGoogle Scholar

  • [100] Silva, C. H. B., Ferreira, D. C., Constantino, V. R. L., & Temperini, M. L. A. (2011). Characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. Journal of Raman Spectroscopy, 42, 1653–1659. DOI: 10.1002/jrs.2898. http://dx.doi.org/10.1002/jrs.2898CrossrefGoogle Scholar

  • [101] Song, S., Pan, L., Li, Y., Shi, Y., Pu, L., Zhang, R., & Zheng, Y. (2008). Self-assembly of polyaniline: Mechanism study. Chinese Journal of Chemical Physics, 21, 187–192. DOI: 10.1088/1674-0068/21/02/187-192. http://dx.doi.org/10.1088/1674-0068/21/02/187-192CrossrefGoogle Scholar

  • [102] Sreedhar, B., Radhika, P., Neelima, B., Hebalkar, N., & Basaveswara Rao, M. V. (2009). Synthesis and characterization of polyaniline: nanospheres, nanorods, and nanotubes-catalytic application for sulfoxidation reactions. Polymers for Advanced Technologies, 20, 950–958. DOI: 10.1002/pat.1344. http://dx.doi.org/10.1002/pat.1344CrossrefGoogle Scholar

  • [103] Stejskal, J., Riede, A., Hlavatá, D., Prokeš, J., Helmstedt, M., & Holler, P. (1998). The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synthetic Metals, 96, 55–61. DOI: 10.1016/s0379-6779(98)00064-2. http://dx.doi.org/10.1016/S0379-6779(98)00064-2CrossrefGoogle Scholar

  • [104] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–868. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac200274050857CrossrefGoogle Scholar

  • [105] Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report). Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577050815. http://dx.doi.org/10.1351/pac200577050815CrossrefGoogle Scholar

  • [106] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.007CrossrefGoogle Scholar

  • [107] Stejskal, J., & Sapurina, I. (2008). Polyaniline — a conducting polymer. Materials Syntheses, 2008, 199–207. DOI: 10.1007/978-3-211-75125-1 26. http://dx.doi.org/10.1007/978-3-211-75125-1_26CrossrefGoogle Scholar

  • [108] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nan otubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601qCrossrefGoogle Scholar

  • [109] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.006CrossrefGoogle Scholar

  • [110] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.3179CrossrefGoogle Scholar

  • [111] Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferraris, J. P. (2009a). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI: 10.1016/j.synthmet.2008.11.002. http://dx.doi.org/10.1016/j.synthmet.2008.11.002CrossrefGoogle Scholar

  • [112] Surwade, S. P., Manohar, N., & Manohar, S. K. (2009b). Origin of bulk nanoscale morphology in conducting polymers. Macromolecules, 42, 1792–1795. DOI: 10.1021/ma900141g. http://dx.doi.org/10.1021/ma900141gCrossrefGoogle Scholar

  • [113] Tang, Q., Wu, J., Sun, X., Li, Q., & Lin, J. (2009). Layerby-layer self-assembly of conducting multilayer film from poly(sodium styrenesulfonate) and polyaniline. Journal of Colloid and Interface Science, 337, 155–161. DOI: 10.1016/j.jcis.2009.04.069. http://dx.doi.org/10.1016/j.jcis.2009.04.069CrossrefGoogle Scholar

  • [114] Tran, H. D., Wang, Y., D’Arcy, J. M., & Kaner, R. B. (2008a). Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2, 1841–1848. DOI: 10.1021/nn800272z. http://dx.doi.org/10.1021/nn800272zCrossrefGoogle Scholar

  • [115] Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008b). Substituted polyaniline nanofibers produced via rapid initiated polymerization. Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d. http://dx.doi.org/10.1021/ma800122dCrossrefGoogle Scholar

  • [116] Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce ”polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a. http://dx.doi.org/10.1039/c0jm02699aCrossrefGoogle Scholar

  • [117] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. The Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528gCrossrefGoogle Scholar

  • [118] Venancio, E. C., Wang, P. C., & MacDiarmid, A. G. (2006). The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synthetic Metals, 156, 357–369. DOI: 10.1016/j.synthmet.2005.08.035. http://dx.doi.org/10.1016/j.synthmet.2005.08.035CrossrefGoogle Scholar

  • [119] Virji, S., Fowler, J. D., Baker, C. O., Huang, J., Kaner, R. B., & Weiller, B. H. (2005). Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small, 1, 624–627. DOI: 10.1002/smll.200400155. http://dx.doi.org/10.1002/smll.200400155CrossrefGoogle Scholar

  • [120] Virji, S., Kaner, R. B., & Weiller, B. H. (2006). Hydrogen sensors based on conductivity changes in polyaniline nanofibers. The Journal of Physical Chemistry B, 110, 22266–22270. DOI: 10.1021/jp063166g. http://dx.doi.org/10.1021/jp063166gCrossrefGoogle Scholar

  • [121] Wan, M. (2009). Some issues related to polyaniline micro-/nanostructures. Macromolecular Rapid Communications, 30, 963–975. DOI: 10.1002/marc.200800817. http://dx.doi.org/10.1002/marc.200800817CrossrefGoogle Scholar

  • [122] Wang, C., Wang, Z., Li, M., & Li, H. (2001). Well-aligned polyaniline nano-fibril array membrane and its field emission property. Chemical Physics Letters, 341, 431–434. DOI: 10.1016/s0009-2614(01)00509-7. http://dx.doi.org/10.1016/S0009-2614(01)00509-7CrossrefGoogle Scholar

  • [123] Wang, X., Liu, N., Yan, X., Zhang, W. J., & Wei, Y. (2005). Alkali-guided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI: 10.1246/cl.2005.42. http://dx.doi.org/10.1246/cl.2005.42CrossrefGoogle Scholar

  • [124] Wang, Y., & Jing, X. (2007). Transparent conductive thin films based on polyaniline nanofibers. Materials Science and Engineering B, 138, 95–100. DOI: 10.1016/j.mseb.2006.12.016. http://dx.doi.org/10.1016/j.mseb.2006.12.016CrossrefGoogle Scholar

  • [125] Wang, Y., & Jing, X. (2008). Formation of polyaniline nanofibers: A morphological study. The Journal of Physical Chemistry B, 112, 1157–1162. DOI: 10.1021/jp076112v. http://dx.doi.org/10.1021/jp076112vCrossrefGoogle Scholar

  • [126] Wang, J. S., Wang, J. X., Yang, Z., Wang, Z., Zhang, F. B., & Wang, S. C. (2008). A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology. Reactive & Functional Polymers, 68, 1435–1440. DOI: 10.1016/j.reactfunctpolym.2008.07.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.07.002CrossrefGoogle Scholar

  • [127] Wang, J. S., Wang, J. X., Wang, Z., & Zhang, F. B. (2009). A template-free method toward urchin-like polyaniline microspheres. Macromolecular Rapid Communications, 30, 604–608. DOI: 10.1002/marc.200800726. http://dx.doi.org/10.1002/marc.200800726CrossrefGoogle Scholar

  • [128] Wang, Y., Tran, H. D., Liao, L., Duan, X., & Kaner, R. B. (2010). Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. Journal of the American Chemical Society, 132, 10365–10373. DOI: 10.1021/ja1014184. http://dx.doi.org/10.1021/ja1014184CrossrefGoogle Scholar

  • [129] Wang, Y., Tran, H. D., & Kaner, R. B. (2011). Applications of oligomers for nanostructured conducting polymers. Macromolecular Rapid Communications, 32, 35–49. DOI: 10.1002/marc.201000280. http://dx.doi.org/10.1002/marc.201000280CrossrefGoogle Scholar

  • [130] Wang, Y., Liu, J., Tran, H. D., Mecklenburg, M., Guan, X. N., Stieg, A. Z., Regan, B. C., Martin, D. C., & Kaner, R. B. (2012a). Morphological and dimensional control via hierarchical assembly of doped oligoaniline single crystals. Journal of the American Chemical Society, 134, 9251–9262. DOI: 10.1021/ja301061a. http://dx.doi.org/10.1021/ja301061aCrossrefGoogle Scholar

  • [131] Wang, Z. L., Guo, R., Li, G. R., Lu, H. L., Liu, Z. Q., Xiao, F. M., Zhang, M., & Tong, Y. X. (2012b). Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. Journal of Materials Chemistry, 22, 2401–2404. DOI: 10.1039/c2jm15070k. http://dx.doi.org/10.1039/c2jm15070kCrossrefGoogle Scholar

  • [132] Wei, Y., Sun, Y., & Tang, X. (1989). Autoacceleration and kinetics of electrochemical polymerization of aniline. The Journal of Physical Chemistry, 93, 4878–4881. DOI: 10.1021/j100349a039. http://dx.doi.org/10.1021/j100349a039CrossrefGoogle Scholar

  • [133] Wei, Z., & Wan, M. (2002). Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Advanced Materials, 14, 1314–1317. DOI: 10.1002/1521-4095(20020916) 14:18〈1314::AID-ADMA1314〉3.0.CO;2-9. http://dx.doi.org/10.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-9CrossrefGoogle Scholar

  • [134] Wei, Z., Zhang, Z., & Wan, M. (2002). Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir, 18, 917–921. DOI: 10.1021/la0155799. http://dx.doi.org/10.1021/la0155799CrossrefGoogle Scholar

  • [135] Wei, Z., & Faul, C. F. J. (2008). Aniline oligomers — architecture, function and new opportunities for nanostructured materials. Macromolecular Rapid Communications, 29, 280–292. DOI: 10.1002/marc.200700741. http://dx.doi.org/10.1002/marc.200700741CrossrefGoogle Scholar

  • [136] Xu, J., Wang, K., Zu, S. Z., Han, B. H., & Wei, Z. (2010). Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 4, 5019–5026. DOI: 10.1021/nn1006539. http://dx.doi.org/10.1021/nn1006539CrossrefGoogle Scholar

  • [137] Yan, X., Liu, N., Jin, E., Wang, X., & Zhang, W. J. (2007). Polyaniline morphological regulation and control under alkaline condition. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, 28, 391–393. Google Scholar

  • [138] Yang, M., Yao, X. X., Wang, G., & Ding, H. (2008). A simple method to synthesize sea urchin-like polyaniline hollow spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324, 113–116. DOI: 10.1016/j.colsurfa.2008.04.004. http://dx.doi.org/10.1016/j.colsurfa.2008.04.004CrossrefGoogle Scholar

  • [139] Yu, Y., Mao, H., Chen, L., Lu, X., Zhang, W., & Wei, Y. (2004). Synthesis of a novel oligoaniline: ”Dumbbell-shaped” oligoaniline. Macromolecular Rapid Communications, 25, 664–668. DOI: 10.1002/marc.200300117. http://dx.doi.org/10.1002/marc.200300117CrossrefGoogle Scholar

  • [140] Zhang, W. J., Feng, J., MacDiarmid, A. G., & Epstein, A. J. (1997). Synthesis of oligomeric anilines. Synthetic Metals, 84, 119–120. DOI: 10.1016/s0379-6779(97)80674-1. http://dx.doi.org/10.1016/S0379-6779(97)80674-1CrossrefGoogle Scholar

  • [141] Zhang, Z., Wei, Z., & Wan, M. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v. http://dx.doi.org/10.1021/ma020199vCrossrefGoogle Scholar

  • [142] Zhang, L., & Wan, M. (2003). Self-assembly of polyaniline-from nanotubes to hollow microspheres. Advanced Functional Materials, 13, 815–820. DOI: 10.1002/adfm.200304458. http://dx.doi.org/10.1002/adfm.200304458CrossrefGoogle Scholar

  • [143] Zhang, X., Goux, W. J., & Manohar, S. K. (2004). Synthesis of polyaniline nanofibers by ”nanofiber seeding”. Journal of the American Chemical Society, 126, 4502–4503. DOI: 10.1021/ja031867a. http://dx.doi.org/10.1021/ja031867aCrossrefGoogle Scholar

  • [144] Zhang, L., Peng, H., Kilmartin, P. A., Soeller, C., & Travas-Sejdic, J. (2007). Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis, 19, 870–875. DOI: 10.1002/elan.200603790. http://dx.doi.org/10.1002/elan.200603790CrossrefGoogle Scholar

  • [145] Zhang, L., Zujovic, Z. D., Peng, H., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008a). Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules, 41, 8877–8884. DOI: 10.1021/ma801728j. http://dx.doi.org/10.1021/ma801728jCrossrefGoogle Scholar

  • [146] Zhang, H., Li, H., Zhang, F., Wang, J., Wang, Z., & Wang, S. (2008b). Polyaniline nanofibers prepared by a facile electrochemical approach and their supercapacitor performance. Journal of Materials Research, 23, 2326–2332. DOI: 10.1557/jmr.2008.0304. http://dx.doi.org/10.1557/jmr.2008.0304CrossrefGoogle Scholar

  • [147] Zhang, H., Wang, J., Wang, Z., Zhang, F., & Wang, S. (2009). A novel strategy for the synthesis of sheet-like polyaniline. Macromolecular Rapid Communications, 30, 1577–1582. DOI: 10.1002/marc.200900228. http://dx.doi.org/10.1002/marc.200900228CrossrefGoogle Scholar

  • [148] Zhang, H., Zhao, Q., Zhou, S., Liu, N., Wang, X., Li, J., & Wang, F. (2011a). Aqueous dispersed conducting polyaniline nanofibers: Promising high specific capacity electrode materials for supercapacitor. Journal of Power Sources, 196, 10484–10489. DOI: 10.1016/j.jpowsour.2011.08.066. http://dx.doi.org/10.1016/j.jpowsour.2011.08.066CrossrefGoogle Scholar

  • [149] Zhang, L., Zhang, Z., Kilmartin, P. A., & Travas-Sejdic, J. (2011b). Hollow polyaniline and indomethacin composite microspheres for controlled indomethacin release. Macromolecular Chemistry and Physics, 212, 2674–2684. DOI: 10.1002/macp.201100379. http://dx.doi.org/10.1002/macp.201100379CrossrefGoogle Scholar

  • [150] Zhang, X., Zhu, J., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S., & Guo, Z. (2012). Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53, 2109–2120. DOI: 10.1016/j.polymer.2012.02.042. http://dx.doi.org/10.1016/j.polymer.2012.02.042CrossrefGoogle Scholar

  • [151] Zhou, C., Han, J., Song, G., & Guo, R. (2007). Polyaniline hierarchical structures synthesized in aqueous solution: Micromats of nanofibers. Macromolecules, 40, 7075–7078. DOI: 10.1021/ma071400a. http://dx.doi.org/10.1021/ma071400aCrossrefGoogle Scholar

  • [152] Zhou, C., Han, J., & Guo, R. (2008a). Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures. Macromolecules, 41, 6473–6479. DOI: 10.1021/ma800500u. http://dx.doi.org/10.1021/ma800500uCrossrefGoogle Scholar

  • [153] Zhou, C., Han, J., Song, G., & Guo, R. (2008b). Fabrication of polyaniline with hierarchical structures in alkaline solution. European Polymer Journal, 44, 2850–2858. DOI: 10.1016/j.eurpolymj.2008.01.025. http://dx.doi.org/10.1016/j.eurpolymj.2008.01.025CrossrefGoogle Scholar

  • [154] Zhu, S., Chen, X., Gou, Y., Zhou, Z., Jiang, M., Lu, J., & Hui, D. (2012). Synthesis and mechanism of polyaniline nanotubes with rectangular cross section via in situ polymerization. Polymers for Advanced Technologies, 23, 796–802. DOI: 10.1002/pat.1967. http://dx.doi.org/10.1002/pat.1967CrossrefGoogle Scholar

  • [155] Zou, W., Quan, B., Wang, K., Xia, L., Yao, J., & Wei, Z. (2011). Patterned growth of polyaniline nanowire arrays on a flexible substrate for high-performance gas sensing. Small, 7, 3287–3291. DOI: 10.1002/smll.201100889. http://dx.doi.org/10.1002/smll.201100889CrossrefGoogle Scholar

  • [156] Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662–670. DOI: 10.1021/ma902109r. http://dx.doi.org/10.1021/ma902109rCrossrefGoogle Scholar

  • [157] Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011a). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t. http://dx.doi.org/10.1021/ma102772tCrossrefGoogle Scholar

  • [158] Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011b). Lamellar-structured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703. http://dx.doi.org/10.1002/asia.201000703CrossrefGoogle Scholar

About the article

Published Online: 2013-05-03

Published in Print: 2013-08-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0376-y.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in