Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Chemical Papers

IMPACT FACTOR 2015: 1.326

SCImago Journal Rank (SJR) 2015: 0.382
Source Normalized Impact per Paper (SNIP) 2015: 0.560
Impact per Publication (IPP) 2015: 1.279

See all formats and pricing
In This Section
Volume 68, Issue 1 (Jan 2014)


Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants

  • Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India
  • Email:
/ Abu Nasar
  • Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India
  • Email:
Published Online: 2013-09-17 | DOI: https://doi.org/10.2478/s11696-013-0424-7


The kinetics of the degradation of metribuzin by water-soluble colloidal MnO2 in acidic medium (HClO4) were studied spectrophotometrically in the absence and presence of surfactants. The experiments were performed under pseudo-first-order reaction conditions in respect of MnO2. The degradation was observed to be of the first order in respect of MnO2 while of fractional order for both metribuzin and HClO4. The rate constant for the degradation of metribuzin was observed to decrease as the concentration of MnO2 increased. The anionic surfactant, sodium dodecyl sulphate (SDS), was observed to be ineffective whereas the non-ionic surfactant, Triton X-100 (TX-100), accelerated the reaction rate. However, the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), caused flocculation with oppositely-charged colloidal MnO2; hence further study was not possible. The catalytic effect of TX-100 was discussed in the light of the available mathematical model. The kinetic data were exploited to generate the various activation parameters for the oxidative degradation of metribuzin by colloidal MnO2 in the absence as well as the presence of the non-ionic surfactant, TX-100.

Keywords: kinetics; metribuzin; manganese dioxide; degradation; pseudo-first-order; surfactants

  • [1] Aisha, U., Qamruzzaman, & Rafiquee, M. Z. A. (2011). Kinetics of reduction of colloidal MnO2 by glyphosate in aqueous and micellar media. International Journal of Inorganic Chemistry, 2011, 243519. DOI: 10.1155/2011/243519. http://dx.doi.org/10.1155/2011/243519 [Crossref]

  • [2] Akram, M., Altaf, M.,& Kabir-Ud-Din (2011). Oxidative degradation of dipeptide (glycyl-glycine) by water soluble manganese dioxide in the aqueous and micellar media. Colloids and Surfaces B: Biointerfaces, 82, 217–223. DOI: 10.1016/j.colsurfb.2010.08.044. http://dx.doi.org/10.1016/j.colsurfb.2010.08.044 [Crossref] [Web of Science]

  • [3] Akram, M., Altaf, M., Kabir-Ud-Din, & Al-Thabaiti, S. A. (2012). Kinetics and mechanism of the reduction of colloidal MnO2 by glycyl-leucine in the absence and presence of surfactants. Journal of Saudi Chemical Society, 16, 217–225. DOI: 10.1016/j.jscs. 2010.12.009. http://dx.doi.org/10.1016/j.jscs.2010.12.009 [Crossref]

  • [4] Alla, M. M. N., Badawi, A. M., Hassan, N. M., El-Bastawisy, Z. M.,& Badran, E. G. (2008). Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pesticide Biochemistry and Physiology, 90, 8–18. DOI: 10.1016/j.pestbp.2007.07.003. http://dx.doi.org/10.1016/j.pestbp.2007.07.003 [Crossref] [Web of Science]

  • [5] Andrabi, S. M. Z.,& Khan, Z. (2005). Reduction of watersoluble colloidal manganese dioxide by thiourea: a kinetic and mechanistic study. Colloid and Polymer Science, 284, 36–43. DOI: 10.1007/s00396-005-1328-z. http://dx.doi.org/10.1007/s00396-005-1328-z [Crossref]

  • [6] Ayranci, E.,& Hoda, N. (2004). Studies on removal of metribuzin, bromacil, 2,4-Dand atrazine from water by adsorption on high area carbon cloth. Journal of Hazardous Materials, 112, 163–168. DOI: 10.1016/j.jhazmat.2004.05.002. http://dx.doi.org/10.1016/j.jhazmat.2004.05.002 [Crossref]

  • [7] Benoit, P., Perceval, J., Stenrød, M., Moni, C., Eklo, O. M., Barriuso, E., Sveistrup, T.,& Kvaerner, J. (2007). Availability and biodegradation of metribuzin in alluvial soils as affected by temperature and soil properties. Weed Research, 47, 517–526. DOI: 10.1111/j.1365-3180.2007.00589.x. http://dx.doi.org/10.1111/j.1365-3180.2007.00589.x [Web of Science] [Crossref]

  • [8] Buhl, K. J.,& Faerber, N. L. (1989). Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius. Archives of Environmental Contamination and Toxicology, 18, 530–536. DOI: 10.1007/bf01055019. http://dx.doi.org/10.1007/BF01055019 [Web of Science] [Crossref]

  • [9] Burrows, H. D., Canle, M. L., Santaballa, J. A.,& Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 67, 71–108. DOI. 10.1016/s1011-1344(02)00277-4. http://dx.doi.org/10.1016/S1011-1344(02)00277-4 [Crossref]

  • [10] Fairchild, J. F., Ruessler, D. S.,& Carlson, A. R. (1998). Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environmental Toxicology and Chemistry, 17, 1830–1834. DOI: 10.1002/etc.5620170924. http://dx.doi.org/10.1002/etc.5620170924 [Crossref]

  • [11] Fairchild, J. F.,& Sappington, L. C. (2002). Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms. Archives of Environmental Contamination and Toxicology, 43, 198–202. DOI: 10.1007/s00244-002-1208-1. http://dx.doi.org/10.1007/s00244-002-1208-1 [Crossref]

  • [12] Fountoulakis, M. S., Makridis, L., Pirounki, E. K., Chroni, C., Kyriacou, A., Lasaridi, K.,& Manios, T. (2010). Fate and effect of linuron and metribuzin on the co-composting of green waste and sewage sludge. Waste Management, 30, 41–49. DOI: 10.1016/j.wasman.2009.08.014. http://dx.doi.org/10.1016/j.wasman.2009.08.014 [Web of Science] [Crossref]

  • [13] Getenga, Z. M., Madadi, V.,& Wandiga, S. O. (2004). Studies on biodegradation of 2,4-D and metribuzin in soil under controlled conditions. Bulletin of Environmental Contamination and Toxicology, 72, 504–513. DOI: 10.1007/s00128-004-0273-8. http://dx.doi.org/10.1007/s00128-004-0273-8 [Crossref]

  • [14] Gopal, M., Dutta, D., Jha, S. K., Kalra, S., Bandyopadhyay, S.,& Das, S. K. (2011). Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pesticide Research Journal, 23, 36–40.

  • [15] Kabir-Ud-Din, Fatma, W.,& Khan, Z. (2004). Effect of surfactants on the oxidation of oxalic acid by soluble colloidal MnO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234, 159–164. DOI: 10.1016/j.colsurfa.2003. 12.015. http://dx.doi.org/10.1016/j.colsurfa.2003.12.015 [Crossref]

  • [16] Kabir-Ud-Din, Iqubal, S. M. S.,& Khan, Z. (2005). Effect of ionic and non-ionic surfactants on the reduction of water soluble colloidal MnO2 by glycolic acid. Colloid and Polymer Science, 284, 276–283. DOI: 10.1007/s00396-005-1373-7. http://dx.doi.org/10.1007/s00396-005-1373-7 [Crossref]

  • [17] Kabir-Ud-Din, Zaidi, N. H., Akram, M.,& Khan, Z. (2006). Mechanism of the oxidation of D-glucose onto colloidal MnO2 surface in the absence and presence of TX-100 micelles. Colloid and Polymer Science, 284, 1387–1393. DOI: 10.1007/s00396-006-1507-6. http://dx.doi.org/10.1007/s00396-006-1507-6 [Crossref]

  • [18] Kabir-Ud-Din, & Iqubal, S. M. S. (2010). Kinetics of the reduction of water soluble colloidal MnO2 by mandelic acid in the absence and presence of non-ionic surfactant Triton X-100. Colloid Journal, 72, 195–204. DOI: 10.1134/s1061933x10020080. http://dx.doi.org/10.1134/S1061933X10020080 [Crossref] [Web of Science]

  • [19] Khan, Z., Kumar, P.,& Kabir-Ud-Din (2004). Kinetics and mechanism of the reduction of colloidal manganese dioxide by D-fructose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 248, 25–31. DOI: 10.1016/j.colsurfa.2004.08.020. http://dx.doi.org/10.1016/j.colsurfa.2004.08.020 [Crossref]

  • [20] Khoury, R., Coste, C. M.,& Kawar, N. S. (2006). Degradation of metribuzin in two soil types of Lebanon. Journal of Environmental Science and Health, Part B, 41, 795–806. DOI: 10.1080/03601230600805790. http://dx.doi.org/10.1080/03601230600805790 [Crossref]

  • [21] Kitous, O., Cheikh, A., Lounici, H., Grib, H., Pauss, A.,& Mameri, N. (2009). Application of the electrosorption technique to remove Metribuzin pesticide. Journal of Hazardous Materials, 161, 1035–1039. DOI: 10.1016/j.jhazmat.2008.04.091. http://dx.doi.org/10.1016/j.jhazmat.2008.04.091 [Web of Science] [Crossref]

  • [22] Kitous, O., Hamadou, H., Lounici, H., Drouiche, N.,& Mameri, N. (2012). Metribuzin removal with electro-activated granular carbon. Chemical Engineering and Processing: Process Intensification, 55, 20–23. DOI:10.1016/j.cep.2012.02.005. http://dx.doi.org/10.1016/j.cep.2012.02.005 [Crossref]

  • [23] Kjaer, J., Olsen, D., Henriksen, T.,& Ullum, M. (2005). Leaching of metribuzin metabolites and the associated contamination of a sandy Danish aquifer. Environmental Science & Technology, 39, 8374–8381. DOI: 10.1021/es0506758. http://dx.doi.org/10.1021/es0506758 [Crossref]

  • [24] Medjdoub, A., Merzouk, S. A., Merzouk, H., Chiali, F. Z.,& Narce, M. (2011). Effects of Mancozeb and Metribuzin on in vitro proliferative responses and oxidative stress of human and rat spleen lymphocytes stimulated by mitogens. Pesticide Biochemistry and Physiology, 101, 27–33. DOI: 10.1016/j.pestbp.2011.06.002. http://dx.doi.org/10.1016/j.pestbp.2011.06.002 [Web of Science] [Crossref]

  • [25] Mulbah, C. K., Porthouse, J. D., Jugsujinda, A., de Laune, R. D.,& Johnson, A. B. (2000). Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils. Journal of Environmental Science and Health, Part B, 35, 689–704. DOI: 10.1080/03601230009373302. http://dx.doi.org/10.1080/03601230009373302 [Crossref]

  • [26] Muszkat, L., Feigelson, L., Bir, L.,& Muszkat, K. A. (1998). Reaction patterns in photooxidative degradation of two herbicides. Chemosphere, 36, 1485–1492. DOI: 10.1016/s0045-6535(97)10047-9. http://dx.doi.org/10.1016/S0045-6535(97)10047-9 [Crossref]

  • [27] Ort, M. P., Fairchild, J. F.,& Finger, S. E. (1994). Acute and chronic effects of four commercial herbicide formulations on Ceriodaphnia dubia. Archives of Environmental Contamination and Toxicology, 27, 103–106. DOI: 10.1007/bf00203894. http://dx.doi.org/10.1007/BF00203894 [Crossref]

  • [28] Perez-Benito, J. F.,& Arias, C. (1992). A kinetic study of the reaction between soluble (colloidal) manganese dioxide and formic acid. Journal of Colloid and Interface Science, 149, 92–97. DOI: 10.1016/0021-9797(92)90394-2. http://dx.doi.org/10.1016/0021-9797(92)90394-2 [Crossref]

  • [29] Perez-Benito, J. F., Arias, C.,& Amat, E. (1996). A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. Journal of Colloid and Interface Science, 177, 288–297. DOI: 10.1006/jcis.1996.0034. http://dx.doi.org/10.1006/jcis.1996.0034 [Crossref]

  • [30] Qamruzzaman, & Nasar, A. (2012). Degradation of methomyl by colloidal manganese dioxide in acidic medium. Chemical Science Review and Letters, 1, 113–119.

  • [31] Raschke, U., Werner, G., Wilde, H.,& Stottmeister, U. (1998a). Photolysis of metribuzin in oxygenated aqueous solutions. Chemosphere, 36, 1745–1758. DOI: 10.1016/s0045-6535(97)10069-8. http://dx.doi.org/10.1016/S0045-6535(97)10069-8 [Crossref]

  • [32] Raschke, U., Werner, G., Wilde, H.,& Stottmeister, U. (1998b). Photodecomposition of 4-amino-1,2,4-triazine-3,5-diones and -thiones in oxygenated aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 115, 191–197. DOI: 10.1016/s1010-6030(98)00265-2. http://dx.doi.org/10.1016/S1010-6030(98)00265-2 [Crossref]

  • [33] Singh, N. (2009). Adsorption of herbicides on coal fly ash from aqueous solutions. Journal of Hazardous Materials, 168, 233–237. DOI: 10.1016/j.jhazmat.2009.02.016. http://dx.doi.org/10.1016/j.jhazmat.2009.02.016 [Crossref]

  • [34] Soltani, N., Deen, B., Bowley, S.,& Sikkema, P. H. (2005). Effects of pre-emergence applications of flufenacet plus metribuzin on weeds and soybean (Glycine max). Crop Protection, 24, 507–511. DOI: 10.1016/j.cropro.2004.09.018. http://dx.doi.org/10.1016/j.cropro.2004.09.018 [Crossref]

  • [35] Tunçay, M., Yüce, N., Arlkan, B., & Göktürk, S. (1999). A kinetic study of the reaction between colloidal manganese dioxide and formic acid in aqueous perchloric acid solution in the presence of surface active agents. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 149, 279–284. DOI: 10.1016/s0927-7757(98)00520-2. http://dx.doi.org/10.1016/S0927-7757(98)00520-2 [Crossref]

  • [36] Webb, K. M.,& Aylmore, L. A. G. (2002). The role of soil organic matter and water potential in determining pesticide degradation. Developments in Soil Science, 28A, 117–125. DOI: 10.1016/s0166-2481(02)80048-4. http://dx.doi.org/10.1016/S0166-2481(02)80048-4 [Crossref]

  • [37] Webster, G. R. B., Sarna, L. P.,& Macdonald, S. R. (1978). Nonbiological degradation of the herbicide metribuzin in manitoba soils. Bulletin of Environmental Contamination and Toxicology, 20, 401–408. DOI: 10.1007/bf01683538. http://dx.doi.org/10.1007/BF01683538 [Crossref]

  • [38] Yahiaoui, O., Aizel, L., Lounici, H., Drouiche, N., Goosen, M. F. A., Pauss, A.,& Mameri, N. (2011). Evaluating removal of metribuzin pesticide from contaminated groundwater using an electrochemical reactor combined with ultraviolet oxidation. Desalination, 270, 84–89. DOI: 10.1016/j.desal.2010.11.025. http://dx.doi.org/10.1016/j.desal.2010.11.025 [Web of Science] [Crossref]

About the article

Published Online: 2013-09-17

Published in Print: 2014-01-01

Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0424-7. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in