Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 68, Issue 12

Issues

Vapour permeation and sorption in fluoropolymer gel membrane based on ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide

Lenka Morávková / Ondřej Vopička / Jiří Vejražka / Hana Vychodilová / Zuzana Sedláková / Karel Friess / Pavel Izák
Published Online: 2014-11-04 | DOI: https://doi.org/10.2478/s11696-014-0623-x

Abstract

The emissions of hydrocarbons from fossil fuels into atmosphere entail both an economic loss and an environmental pollution. Membrane separations can be used for vapour recovery and/or vapour removal from the permanent gas stream, given that the appropriate membrane is identified. A neat poly(vinylidene fluoride-co-hexafluoropropylene) membrane is impermeable to both the representatives of aliphatic hydrocarbons and branched hydrocarbons, namely hexane and isooctane, whereas the permeation flux is enhanced by the presence of 80 mass % of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide in the membrane, as detailed in this work. The permeabilities of hydrocarbon vapours were determined from the binary mixture containing hydrocarbon and nitrogen to simulate the real input of an air stream containing a condensable hydrocarbon. The diffusion coefficient determined from sorption measurements was higher for hexane, as would be expected for a smaller molecule, whereas both the sorption isotherms and permeabilities of the hydrocarbons studied were found to be almost identical. It is possible that the sorption effect predominates in the transport mechanism for VOCs/N2 separations.

Keywords: volatile organic compound removal; ionic liquid membrane; [C2mim][Tf2N]; hexane (n-hexane); isooctane (2,2,4-trimethylpentane); hydrocarbon removal

  • [1] Baker, R. W. (2002). Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 41, 1393–1411. DOI: 10.1021/ie0108088. http://dx.doi.org/10.1021/ie0108088CrossrefGoogle Scholar

  • [2] Baker, R. W. (2004). Membrane technology and applications (2nd ed.). Chichester, UK: Wiley. http://dx.doi.org/10.1002/0470020393Google Scholar

  • [3] Bernardo, P., Drioli, E., & Golemme, G. (2009). Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 48, 4638–4663. DOI: 10.1021/ie8019032. http://dx.doi.org/10.1021/ie8019032Web of ScienceCrossrefGoogle Scholar

  • [4] Bodzek, M. (2000). Membrane techniques in air cleaning. Polish Journal of Environmental Studies, 9, 1–12. Google Scholar

  • [5] Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press. Google Scholar

  • [6] de los Ríos, A. P., Hernández-Fernández, F. J., Tomás-Alonso, F., Palacios, J. M., & Víllora, G. (2009). Stability studies of supported liquid membranes based on ionic liquids: Effect of surrounding phase nature. Desalination, 245, 776–782. DOI: 10.1016/j.desal.2009.02.051. http://dx.doi.org/10.1016/j.desal.2009.02.051Web of ScienceCrossrefGoogle Scholar

  • [7] Dytrych, P., Kluson, P., Dzik, P., Vesely, M., Morozova, M., Sedlakova, Z., & Solcova, O. (2014). Photo-electrochemical properties of ZnO and TiO2 layers in ionic liquid environment. Catalysis Today, 230, 152–157. DOI: 10.1016/j.cattod.2013.10.048. http://dx.doi.org/10.1016/j.cattod.2013.10.048CrossrefWeb of ScienceGoogle Scholar

  • [8] Favre, E., Clément, R., Nguyen, Q. T., Schaetzel, P., & Néel, J. (1993). Sorption of organic solvents into dense silicone membranes. Part 2.—Development of a new approach based on a clustering hypothesis for associated solvents. Journal of the Chemical Society, Faraday Transactions, 89, 4347–4353. DOI: 10.1039/ft9938904347. http://dx.doi.org/10.1039/ft9938904347CrossrefGoogle Scholar

  • [9] Friess, K., Jansen, J. C., Vopička, O., Randová, A., Hynek, V., Šípek, M., Bartovská, L., Izák, P., Dingemans, M., Dewulf, J., Van Langenhove, H., & Drioli, E. (2009). Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. Journal of Membrane Science, 338, 161–174. DOI: 10.1016/j.memsci.2009.04.030. http://dx.doi.org/10.1016/j.memsci.2009.04.030CrossrefWeb of ScienceGoogle Scholar

  • [10] Friess, K., Jansen, J. C., Bazzarelli, F., Izák, P., Jarmarová, V., Kačírková, M., Schauer, J., Clarizia, G., & Bernardo, P. (2012). High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. Journal of Membrane Science, 415–416, 801–809. DOI: 10.1016/j.memsci.2012.05.072. http://dx.doi.org/10.1016/j.memsci.2012.05.072CrossrefGoogle Scholar

  • [11] Funke, H. H., Kovalchick, M. G., Falconer, J. L., & Noble R. D. (1996). Separation of hydrocarbon isomer vapors with silicalite zeolite membranes. Industrial & Engineering Chemistry Research, 35, 1575–1582. DOI: 10.1021/ie950495e. http://dx.doi.org/10.1021/ie950495eCrossrefGoogle Scholar

  • [12] He, X. Z., & Hägg, M. B. (2012). Membranes for environmentally friendly energy processes. Membranes, 2, 706–726. DOI: 10.3390/membranes2040706. http://dx.doi.org/10.3390/membranes2040706CrossrefGoogle Scholar

  • [13] Jansen, J. C., Clarizia, G., Bernardo, P., Bazzarelli, F., Friess, K., Randová, A., Schauer, J., Kubicka, D., Kacirková, M., & Izak, P. (2013). Gas transport properties and pervaporation performance of fluoropolymer gel membranes based on pure and mixed ionic liquids. Separation and Purification Technology, 109, 87–97. DOI: 10.1016/j.seppur.2013.02.034. http://dx.doi.org/10.1016/j.seppur.2013.02.034Web of ScienceCrossrefGoogle Scholar

  • [14] Jansen, J. C., Friess, K., Clarizia, G., Schauer, J., & Izák, P. (2011). High ionic liquid content polymeric gel membranes: Preparation and performance. Macromolecules, 44, 39–45. DOI: 10.1021/ma102438k. http://dx.doi.org/10.1021/ma102438kCrossrefWeb of ScienceGoogle Scholar

  • [15] Kim, H. J., Nah, S. S., & Min, B. R. (2002). A new technique for preparation of PDMS pervaporation membrane for VOC removal. Advances in Environmental Research, 6, 255–264. DOI: 10.1016/s1093-0191(01)00056-9. http://dx.doi.org/10.1016/S1093-0191(01)00056-9CrossrefGoogle Scholar

  • [16] Krull, F. F., Fritzmann, C., & Melin, T. (2008). Liquid membranes for gas/vapor separations. Journal of Membrane Science, 325, 509–519. DOI: 10.1016/j.memsci.2008.09.018. http://dx.doi.org/10.1016/j.memsci.2008.09.018CrossrefGoogle Scholar

  • [17] Lide, D. R. (2003). Handbook of chemistry and physics (84th ed.). Boca Raton, FL, USA: CRC Press. Google Scholar

  • [18] Liu, Y. J., Feng, X., & Lawless, D. (2006). Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. Journal of Membrane Science, 271, 114–124. DOI: 10.1016/j.memsci.2005.07.012. http://dx.doi.org/10.1016/j.memsci.2005.07.012CrossrefGoogle Scholar

  • [19] Liu, L., Chakma, A., Feng, X. S., & Lawless, D. (2009). Separation of VOCs from N2 using poly(ether block amide) membranes. The Canadian Journal of Chemical Engineering, 87, 456–465. DOI: 10.1002/cjce.20181. http://dx.doi.org/10.1002/cjce.20181CrossrefGoogle Scholar

  • [20] Lozano, L. J., Godínez, C., de los Ríos, A. P., Hernández-Fernández, F. J., Sánchez-Segado, S., & Alguacil, F. J. (2011). Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 376, 1–14. DOI: 10.1016/j.memsci.2011.03.036. http://dx.doi.org/10.1016/j.memsci.2011.03.036Web of ScienceCrossrefGoogle Scholar

  • [21] Majumdar, S., Bhaumik, D., & Sirkar, K. K. (2003). Performance of commercial-size plasmapolymerized PDMS-coated hollow fiber modules in removing VOCs from N2/air. Journal of Membrane Science, 214, 323–330. DOI: 10.1016/s0376-7388(02)00545-8. http://dx.doi.org/10.1016/S0376-7388(02)00545-8CrossrefGoogle Scholar

  • [22] Matsumoto, M., Ueba, K., & Kondo, K. (2009). Vapor permeation of hydrocarbons through supported liquid membranes based on ionic liquids. Desalination, 241, 365–371. DOI: 10.1016/j.desal.2007.11.090. http://dx.doi.org/10.1016/j.desal.2007.11.090Web of ScienceCrossrefGoogle Scholar

  • [23] Nosrati, S., Jayakumar, N. S., & Hashim, M. A. (2011). Performance evaluation of supported ionic liquid membrane for removal of phenol. Journal of Hazardous Materials, 192, 1283–1290. DOI: 10.1016/j.jhazmat.2011.06.037. http://dx.doi.org/10.1016/j.jhazmat.2011.06.037CrossrefGoogle Scholar

  • [24] Pereiro, A. B., Araújo, J. M. M., Esperança, J. M. S. S., Marrucho, I. M., & Rebelo, L. P. N. (2012). Ionic liquids in separations of azeotropic systems - A review. Journal of Chemical Thermodynamics, 46, 2–28. DOI: 10.1016/j.jct.2011.05.026. http://dx.doi.org/10.1016/j.jct.2011.05.026CrossrefGoogle Scholar

  • [25] Rebollar-Perez, G., Carretier, E., Lesage, N., & Moulin, P. (2011). Volatile organic compound (VOC) removal by vapor permeation at low VOC concentrations: Laboratory scale results and modeling for scale up. Membranes, 1, 80–90. 10.3390/membranes1010080. http://dx.doi.org/10.3390/membranes1010080Google Scholar

  • [26] Seber, G. A. F., & Wild, C. J. (2003). Nonlinear regression. Hoboken, NJ, USA: Wiley. Google Scholar

  • [27] Sedláková, Z., & Wagner, Z. (2012). High-pressure phase equilibria in systems containing CO2 and ionic liquid of the [Cnmim][Tf2N] type. Chemical & Biochemical Engineering Quarterly, 26, 55–60. Google Scholar

  • [28] Sedláková, Z., Clarizia, G., Bernardo, P., Jansen, J. C., Slobodian, P., Svoboda, P., Kárászová, M., Friess, K., & Izák, P. (2014). Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes, 4, 20–39. DOI: 10.3390/membranes4010020. http://dx.doi.org/10.3390/membranes4010020CrossrefGoogle Scholar

  • [29] Semenova, S. I. (2004). Polymer membranes for hydrocarbon separation and removal. Journal of Membrane Science, 231, 189–207. DOI: 10.1016/j.memsci.2003.11.022. http://dx.doi.org/10.1016/j.memsci.2003.11.022CrossrefGoogle Scholar

  • [30] Sohn, W. I., Ryu, D. H., Oh, S. J., & Koo, J. K. (2000). A study on the development of composite membranes for the separation of organic vapors. Journal of Membrane Science, 175, 163–170. DOI: 10.1016/s0376-7388(00)00417-8. http://dx.doi.org/10.1016/S0376-7388(00)00417-8CrossrefGoogle Scholar

  • [31] Vopička, O., Hynek, V., Zgažar, M., Friess, K., & Šípek, M. (2009a). A new sorption model with a dynamic correction for the determination of diffusion coefficients. Journal of Membrane Science, 330, 51–56. DOI: 10.1016/j.memsci.2008.12.037. http://dx.doi.org/10.1016/j.memsci.2008.12.037CrossrefWeb of ScienceGoogle Scholar

  • [32] Vopička, O., Hynek, V., Friess, K., Šípek, M., & Sysel, P. (2009b). A device for determination of vapor sorption in polymers. Chemické Listy, 103, 310–314. Google Scholar

  • [33] Vopička, O., Hynek, V., & Rabová, V. (2010a). Measuring the transient diffusion of vapor mixtures through dense membranes. Journal of Membrane Science, 350, 217–225. DOI: 10.1016/j.memsci.2009.12.031. http://dx.doi.org/10.1016/j.memsci.2009.12.031CrossrefGoogle Scholar

  • [34] Vopička, O., Hynek, V., Friess, K., & Izák, P. (2010b). Blended silicone-ionic liquid membranes: Transport properties of butan-1-ol vapor. European Polymer Journal, 46, 123–128. DOI: 10.1016/j.eurpolymj.2009.10.011. http://dx.doi.org/10.1016/j.eurpolymj.2009.10.011CrossrefGoogle Scholar

  • [35] Vopička, O., Friess, K., Hynek, V., Sysel, P., Zgažar, M., Šípek, M., Pilnáček, K., Lanč, M., Jansen, J. C., Mason, C. R., & Budd, P. M. (2013). Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. Journal of Membrane Science, 434, 148–160 DOI: 10.1016/j.memsci.2013.01.040. http://dx.doi.org/10.1016/j.memsci.2013.01.040Web of ScienceCrossrefGoogle Scholar

  • [36] Zhao, K., Xiu, G. L., Xu, L. H., Zhang, D., Zhang, X. F., & Deshusses, M. A. (2011). Biological treatment of mixtures of toluene and n-hexane vapours in a hollow fibre membrane bioreactor. Environmental Technology, 32, 617–623. DOI: 10.1080/09593330.2010.507634. http://dx.doi.org/10.1080/09593330.2010.507634CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2014-11-04

Published in Print: 2014-12-01


Citation Information: Chemical Papers, Volume 68, Issue 12, Pages 1739–1746, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.2478/s11696-014-0623-x.

Export Citation

© 2014 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in