Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers


IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 68, Issue 3 (Mar 2014)

Issues

Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought

Petya Kovacheva
  • Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, J. Bourchier Blvd., Sofia, 1164, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Svilen Mitsiev
  • Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, J. Bourchier Blvd., Sofia, 1164, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rumyana Djingova
  • Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, J. Bourchier Blvd., Sofia, 1164, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11696-013-0457-y

Abstract

A sequential extraction procedure was used to study the changes in the physicochemical forms of americium (Am), thorium (Th), and uranium (U) in laboratory-contaminated Chernozem soil as a result of sharp variations of the environmental temperature and soil moisture. The influence of freezing and soil drought on the radio-ecological hazard was evaluated three months after radioactive contamination with aqueous solutions of 241Am, 234Th, and U. The subsequent changes in the physicochemical forms of the actinides, caused by sharp increases in the environmental temperature and soil moisture, were examined for one month. The data showed that continuous freezing increased the potentially mobile forms of Am and Th but had the opposite effect on U. Prolonged soil drought did not influence the fractionation of Am and Th but led to the redistribution of U between the carbonates and organic matter and caused its immobilisation. The sharp increase in the temperature of the frozen soil caused the immobilisation of Am and Th and increased the potential mobility of U. The warming and enhanced humidity of the dry soil led to the immobilisation of Am and redistribution of U between the soil phases.

Keywords: americium; thorium; uranium; physicochemical forms; environmental temperature; soil drought

  • [1] ATSDR (1990). Toxicological profile for thorium. Atlanta, GA, USA: Agency for Toxic Substances and Disease Registry, U.S. Public Health Service. Google Scholar

  • [2] ATSDR (2004). Toxicological profile for americium. Atlanta, GA, USA: U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Google Scholar

  • [3] Boyle, R.W. (Ed.) (1982). Geochemical prospecting for thorium and uranium deposits (Series: Developments in economic geology, Vol. 16). Amsterdam, The Netherlands: Elsevier. Google Scholar

  • [4] Choppin, G. R. (2005). Actinide science: Fundamental and environmental aspects. Journal of Nuclear and Radiochemical Sciences, 6, 1–5. Google Scholar

  • [5] Degueldre, C., Ulrich, H. J., & Silby, H. (1994). Sorption of 241Am onto montmorillonite, illite and hematite colloids. Radiochimica Acta, 65, 173–179. Web of ScienceGoogle Scholar

  • [6] Dowdall, M., Standring, W., Shaw, G., & Strand, P. (2008). Will global warming affect soil-to-plant transfer of radionuclides? Journal of Environmental Radioactivity, 99, 1736–1745. DOI: 10.1016/j.jenvrad.2008.06.012. http://dx.doi.org/10.1016/j.jenvrad.2008.06.012CrossrefWeb of ScienceGoogle Scholar

  • [7] Fedorov, A. A., & Basistyi, V. P. (1974). Winter freezing and chemical properties of meadow brown soils. Sibirski Vestnik Sel'shokhozyaistvennoi Nauki, 4, 8–12. Google Scholar

  • [8] Glaus, M. A., Hummel, W., & Van Loon, L. R. (1995). Stability of mixed-ligand complexes of metal ions with humic substances and low molecular weight ligands. Environmental Science and Technology, 29, 2150–2153. DOI: 10.1021/es00008a039. http://dx.doi.org/10.1021/es00008a039CrossrefGoogle Scholar

  • [9] Hallet, B. (1976). Deposits formed by subglacial precipitation of CaCO3. Geological Society of America Bulletin, 87, 1003–1015. DOI: 10.1130/0016-7606(1976)87〈1003:DFBSPO〉2.0.CO;2. http://dx.doi.org/10.1130/0016-7606(1976)87<1003:DFBSPO>2.0.CO;2CrossrefGoogle Scholar

  • [10] Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W., & Stingeder, G. J. (2004). Determination of trace elements bound to soil and sediment fractions (IUPAC Technical Report). Pure and Applied Chemistry, 76, 415–442. DOI: 10.1351/pac200476020415. http://dx.doi.org/10.1351/pac200476020415CrossrefGoogle Scholar

  • [11] Koch-Steindl, H., & Pröhl, G. (2001). Considerations on the behaviour of long-lived radionuclides in the soil. Radiation and Environmental Biophysics, 40, 93–104. DOI: 10.1007/s004110100098. http://dx.doi.org/10.1007/s004110100098CrossrefGoogle Scholar

  • [12] Lehrsch, G. A., Sojka, R. E., Carter, D. L., & Jolley, P. M. (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55, 1401–1406. DOI: 10.2136/sssaj1991.03615995005500050033x. http://dx.doi.org/10.2136/sssaj1991.03615995005500050033xWeb of ScienceCrossrefGoogle Scholar

  • [13] Marion, G. M. (1995). Freeze-thaw processes and soil chemistry. Special report 95-12. Washington, DC, USA: US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory. Google Scholar

  • [14] Marquardt, C. M. (Ed.) (2008). Migration of actinides in the system clay, humic substances, aquifer. Wissenschaftliche Berichte, FZKA 7407. Karlsruhe, Germany: Forschungszentrum Karlsruhe GmbH. Google Scholar

  • [15] Ren, X., Wang, S., Yang, S., & Li, J. (2010). Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. Journal of Radioanalytical and Nuclear Chemistry, 283, 253–259. DOI: 10.1007/s10967-009-0323-0. http://dx.doi.org/10.1007/s10967-009-0323-0CrossrefGoogle Scholar

  • [16] Schmitt, A., Glaser, B., Borken, W., & Matzner, E. (2008). Repeated freeze-thaw cycles changed organic matter quality in a temperate forest soil. Journal of Plant Nutrition and Soil Science, 171, 707–718. DOI: 10.1002/jpln.200700334. http://dx.doi.org/10.1002/jpln.200700334CrossrefWeb of ScienceGoogle Scholar

  • [17] Schultz, M. K., Burnett, W. C., & Inn, K. G. W. (1998). Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments. Journal of Environmental Radioactivity, 40, 155–174. DOI: 10.1016/s0265-931x(97)00075-1. http://dx.doi.org/10.1016/S0265-931X(97)00075-1CrossrefGoogle Scholar

  • [18] Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151. DOI: 10.1080/03067319308027619. http://dx.doi.org/10.1080/03067319308027619CrossrefGoogle Scholar

  • [19] Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119, 33–44. DOI: 10.1016/s0269-7491(01)00325-6. http://dx.doi.org/10.1016/S0269-7491(01)00325-6CrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-03-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0457-y.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in