Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 68, Issue 4

Issues

Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area

Edyta Kułdo
  • Research Group of Environmental Chemistry, Ecotoxicology and Food Toxicology, Institute of Environmental Sciences & Public Health, University of Gdańsk, 18 Sobieskiego, 80 952, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grażyna Jarzyńska
  • Research Group of Environmental Chemistry, Ecotoxicology and Food Toxicology, Institute of Environmental Sciences & Public Health, University of Gdańsk, 18 Sobieskiego, 80 952, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Gucia
  • Research Group of Environmental Chemistry, Ecotoxicology and Food Toxicology, Institute of Environmental Sciences & Public Health, University of Gdańsk, 18 Sobieskiego, 80 952, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Falandysz
  • Research Group of Environmental Chemistry, Ecotoxicology and Food Toxicology, Institute of Environmental Sciences & Public Health, University of Gdańsk, 18 Sobieskiego, 80 952, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s11696-013-0477-7

Abstract

Concentrations and interrelationships of twenty elements were studied in parasol mushroom and in the top layer of soil (0–10 cm) from the area of Kiwity (Poland). K, P, Mg, Ca, and Zn were found to be the most abundant elements in the mushroom. Higher concentrations of Fe, Mn, Na, Ni occurred in stipes then in caps, while Cd, Cr, Cu, Hg, Rb dominated in caps. Ag, Al, and Ba concentrations in caps and stipes were similar. Parasol mushroom is efficient in up-take and separation of Ag, Cd, Cu, Hg, K (in caps, the bioconcentration factor is BCF ≥ 100), Na, P, Rb (50 < BCF < 100), and Mg, Zn (BCF > 10) in its fruiting bodies, while Al, Ba, Ca, Co, Cr, Fe, Mn, Sr, and Pb are eliminated (BCF < 1). Parasol mushroom from rural forest area in the north-eastern region of Poland is of hygienic concern for human health because of toxic mercury and cadmium content in the edible caps, which are also rich in essential Cu, Fe, and their K, Mn, and Zn content is also high.

Keywords: trace elements; food; fungi; wild food; wild mushrooms

  • [1] Alonso, J., García, M. A., Pérez-López, M., & Melgar, M. J. (2003). The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Archives of Environmental Contamination and Toxicology, 44, 180–188. DOI: 10.1007/s00244-002-2051-0. http://dx.doi.org/10.1007/s00244-002-2051-0CrossrefGoogle Scholar

  • [2] Baptista, P., Ferreira, S., Soares, E., Coelho, V., & de Lourdes Bartos, M. (2009). Tolerance and stress response of Macrolepiota procera to nickel. Journal of Agricultural and Food Chemistry, 57, 7145–7152. DOI: 10.1021/jf902075b. http://dx.doi.org/10.1021/jf902075bCrossrefGoogle Scholar

  • [3] Borovička, J., Kotrba, P., Gryndler, M., Mihaljevič, M., Řanda, Z., Rohovec, J., Cajthaml, T., Stijve, T., & Dunn, C. E. (2010). Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Science of the Total Environment, 408, 2733–2744. DOI: 10.1016/j.scitotenv.2010.02.031. http://dx.doi.org/10.1016/j.scitotenv.2010.02.031CrossrefGoogle Scholar

  • [4] Brzostowski, A., Bielawski, L., Orlikowska, A., Plichta, S., & Falandysz, J. (2009). Instrumental analysis of metals profile in poison pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chemia Analityczna (Warsaw), 54, 1297–1308. Google Scholar

  • [5] Brzostowski, A., Falandysz, J., Jarzyńska, G., & Zhang, D. (2011a). Bioconcentration potential of metallic elements by poison pax (Paxillus involutus) mushroom. Journal of Environmental Science and Health, Part A, 46, 378–393. DOI: 10.1080/10934529.2011.542387. http://dx.doi.org/10.1080/10934529.2011.542387CrossrefGoogle Scholar

  • [6] Brzostowski, A., Jarzyńska, G., Kojta, A. K., Wydmánska, D., & Falandysz, J. (2011b). Variations in metal levels accumulated in poison pax (Paxillus involutus) mushroom collected at one site over four years. Journal of Environmental Science and Health, Part A, 46, 581–588. DOI: 10.1080/10934529.2011.562827. http://dx.doi.org/10.1080/10934529.2011.562827CrossrefGoogle Scholar

  • [7] Carvalho, M. L., Pimentel, A. C., & Fernandes, B. (2005). Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Analytical Science, 21, 747–750. DOI: 10.2116/analsci.21.747. http://dx.doi.org/10.2116/analsci.21.747CrossrefGoogle Scholar

  • [8] Cenci, R. M., Sena, F., & Cocchi, L. (2010). Elementi chimici nei funghi superiori. Rome, Italy: Scientifico. (in Italian) Google Scholar

  • [9] Chang, S. T. (1990). Composition of foods. Mushrooms as food. Food Laboratory News, 21, 7–8. Google Scholar

  • [10] Chang, S. T. (2006). The world mushroom industry: Trends and technological development. International Journal of Medicinal Mushrooms, 8, 297–314. DOI: 10.1615/intjmedmushr.v8.i4.10. http://dx.doi.org/10.1615/IntJMedMushr.v8.i4.10CrossrefGoogle Scholar

  • [11] Chudzyński, K., & Falandysz, J. (2008). Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere, 78, 1230–1239. DOI: 10.1016/j. chemosphere.2008.07.055. http://dx.doi.org/10.1016/j.chemosphere.2008.07.055CrossrefGoogle Scholar

  • [12] Chudzyński, K., Bielawski, L., & Falandysz, J. (2009). Mercury bio-concentration potential of larch bolete, Suillus grevillei, mushroom. Bulletin of Environmental Contamination and Toxicology, 83, 275–279. DOI: 10.1007/s00128-009-9723-7. http://dx.doi.org/10.1007/s00128-009-9723-7CrossrefGoogle Scholar

  • [13] Chudzyński, K., Jarzyńska, G., Stefánska, A., & Falandysz, J. (2011). Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chemistry, 125, 986–990. DOI: 10.1016/j.foodchem.2010.09.102 http://dx.doi.org/10.1016/j.foodchem.2010.09.102CrossrefGoogle Scholar

  • [14] Drbal, K., Kalač, P., Šeflová, A., & Šefl, J. (1975). Obsah mědi v některych druzích jedlych hub. Česká Mykologie, 29, 184–186. (in Czech) Google Scholar

  • [15] Drewnowska, M., Jarzyńska, G., Kojta, A. K., & Falandysz, J. (2012a). Mercury in European blushers, Amanita rubescens, mushrooms and topsoils. Bioconcentration potential and intake assessment. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 47, 466–474. DOI: 10.1080/03601234.2012.663609. http://dx.doi.org/10.1080/03601234.2012.663609CrossrefGoogle Scholar

  • [16] Drewnowska, M., Săpór, A., Jarzyńska, G., Nnorom, I. C., Sajwan, K. S., & Falandysz, J. (2012b). Mercury in Russula mushrooms: Bioconcentration by yellow-ocher brittle gills Russula ochroleuca. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47, 1577–1591. DOI: 10.1080/10934529.2012.680420. http://dx.doi.org/10.1080/10934529.2012.680420CrossrefGoogle Scholar

  • [17] Dybczyński, R. (1996). Preparation and certification of the Polish reference material “oriental tobacco leaves” (CTA-OTL-1) for inorganic trace analysis. Warszawa, Poland: Institute of Nuclear Chemistry and Technology. Google Scholar

  • [18] Falandysz, J. (1990). Mercury content of squid Loligo opalescens. Food Chemistry, 38, 171–177. DOI: 10.1016/0308-8146(90)90191-6. http://dx.doi.org/10.1016/0308-8146(90)90191-6CrossrefGoogle Scholar

  • [19] Falandysz, J. (1991). Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and sheep slaughtered in the northern part of Poland, 1987. Food Additives and Contaminants, 8, 70–83. DOI: 10.1080/02652039109373957. CrossrefGoogle Scholar

  • [20] Falandysz, J. (1993). Some toxic and essential trace metals in cattle from the northern part of Poland. The Science of the Total Environment, 135, 177–191. DOI: 10.1016/0048-9697(93)90306-q. http://dx.doi.org/10.1016/0048-9697(93)90306-QCrossrefGoogle Scholar

  • [21] Falandysz, J. (1994). Some toxic and trace metals in big game hunted in the northern part of Poland in 1987–1991. The Science of the Total Environment, 141, 59–73. DOI: 10.1016/0048-9697(94)90018-3. http://dx.doi.org/10.1016/0048-9697(94)90018-3CrossrefGoogle Scholar

  • [22] Falandysz, J., Bona, H., & Danisiewicz, D. (1994a). Silver content of wild-grown mushrooms from northern Poland. Zeitschrift für Lebensmittel Untersuchung und Forschung, 199, 222–224. DOI: 10.1007/bf01193449. http://dx.doi.org/10.1007/BF01193449CrossrefGoogle Scholar

  • [23] Falandysz, J., Bona, H., & Danisiewicz, D. (1994b). Silver uptake by Agaricus bisporus from an artificially enriched substrate. Zeitschrift für Lebensmittel Untersuchung und Forschung, 199, 225–228. DOI: 10.1007/bf01193450. http://dx.doi.org/10.1007/BF01193450CrossrefGoogle Scholar

  • [24] Falandysz, J., Kotecka, W., & Kannan, K. (1994c). Mercury, lead, cadmium, manganese, copper, iron and zinc concentrations in poultry, rabbit and sheep from the northern part of Poland. Science of the Total Environment, 141, 51–57. DOI: 10.1016/0048-9697(94)90017-5. http://dx.doi.org/10.1016/0048-9697(94)90017-5CrossrefGoogle Scholar

  • [25] Falandysz, J., & Danisiewicz, D. (1995). Bioconcentration factors (BCF) of silver in wild Agaricus campestris. Bulletin of Environmental Contamination and Toxicology, 55, 122–129. DOI: 10.1007/bf00212398. http://dx.doi.org/10.1007/BF00212398CrossrefGoogle Scholar

  • [26] Falandysz, J., & Chwir, A. (1997). The concentrations and bioconcentration factors of mercury in mushrooms from the Mierzeja Wiślana sand-bar, Northern Poland. Science of the Total Environment, 203, 221–228. DOI: 10.1016/s0048-9697(97)00150-2. http://dx.doi.org/10.1016/S0048-9697(97)00150-2CrossrefGoogle Scholar

  • [27] Falandysz, J., Szymczyk, K., Ichihashi, H., Bielawski, L., Gucia, M., Frankowska, A., & Yamasaki, S. I. (2001). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives & Contaminants, 18, 503–513. DOI: 10.1080/02652030119625. CrossrefGoogle Scholar

  • [28] Falandysz, J. (2002). Mercury in mushrooms and soil of the Tarnobrzeska plain, south-eastern Poland. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 37, 343–352. DOI: 10.1081/ese-120002833. http://dx.doi.org/10.1081/ESE-120002833CrossrefGoogle Scholar

  • [29] Falandysz, J., Bielawski, L., Kannan, K., Gucia, M., Lipka, K., & Brzostowski, A. (2002a). Mercury in wild mushrooms and underlying soil substrate from the great lakes land in Poland. Journal of Environmental Monitoring, 4, 473–476. DOI: 10.1039/b202946d. http://dx.doi.org/10.1039/b202946dCrossrefGoogle Scholar

  • [30] Falandysz, J., Lipka, K., Gucia, M., Kawano, M., Strumnik, K., & Kannan, K. (2002b). Accumulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. Environment International, 28, 421–427. DOI: 10.1016/S0160-4120(02)00067-3. http://dx.doi.org/10.1016/S0160-4120(02)00067-3CrossrefGoogle Scholar

  • [31] Falandysz, J., Brzostowski, A., Kawano, M., Kannan, K., Puzyn, T., & Lipka, K. (2003). Concentrations of mercury in wild growing higher fungi and underlying substrate near Lake Wdzydze, Poland. Water, Air, and Soil Pollution, 148, 127–137. DOI: 10.1023/a:1025422017868. http://dx.doi.org/10.1023/A:1025422017868CrossrefGoogle Scholar

  • [32] Falandysz, J., & Brzostowski, A. (2007). Mercury and its bioconcentration factors in Poison Pax (Paxillus involutus) from various sites in Poland. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 42, 1095–1100. DOI: 10.1080/10934520701418599. http://dx.doi.org/10.1080/10934520701418599CrossrefGoogle Scholar

  • [33] Falandysz, J., Gucia, M., & Mazur, A. (2007). Content and bioconcentration factors of mercury by Parasol Mushroom Macrolepiota procera. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 42, 735–740. DOI: 10.1080/03601230701466005. http://dx.doi.org/10.1080/03601230701466005CrossrefGoogle Scholar

  • [34] Falandysz, J. (2008). Selenium in edible mushrooms. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 26, 256–299. DOI: 10.1080/10590500802350086. http://dx.doi.org/10.1080/10590500802350086CrossrefGoogle Scholar

  • [35] Falandysz, J., & Gucia, M. (2008). Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera). Environmental Geochemistry and Health, 30, 121–125. DOI: 10.1007/s10653-008-9133-5. http://dx.doi.org/10.1007/s10653-008-9133-5CrossrefGoogle Scholar

  • [36] Falandysz, J., Kunito, T., Kubota, R., Bielawski, L., Frankowska, A., Falandysz, J. J., & Tanabe, S. (2008a). Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43, 1692–1699. DOI: 10.1080/10934520802330206. http://dx.doi.org/10.1080/10934520802330206CrossrefGoogle Scholar

  • [37] Falandysz, J., Kunito, T., Kubota, R., Gucia, M., Mazur, A., Falandysz, J. J., & Tanabe, S. (2008b). Some mineral constituents of Parasol Mushroom (Macrolepiota procera). Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 43, 187–192. DOI: 10.1080/03601230701795247. http://dx.doi.org/10.1080/03601230701795247CrossrefGoogle Scholar

  • [38] Falandysz, J., Frankowska, A., Jarzyńska, G., Dryžałowska, A., Kojta, A. K., & Zhang, D. (2011). Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 46, 231–246. DOI: 10.1080/03601234.2011.540528 http://dx.doi.org/10.1080/03601234.2011.540528CrossrefGoogle Scholar

  • [39] Falandysz, J. (2012). Comments on “Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey“. doi: 10.1007/s00128-011-0357-1. Bulletin of Environmental Contamination and Toxicology, 88, 651–653. DOI: 10.1007/s00128-012-0566-2. http://dx.doi.org/10.1007/s00128-012-0566-2CrossrefGoogle Scholar

  • [40] Falandysz, J., Kojta, A. K., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Wydmánska, D., Kowalewska, I., Wacko, A., Szlosowska, M., Kannan, K., & Szefer, P. (2012a). Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Additives & Contaminants: Part A, 29, 951–961. DOI: 10.1080/19440049.2012.662702 http://dx.doi.org/10.1080/19440049.2012.662702CrossrefGoogle Scholar

  • [41] Falandysz, J., Widzicka, E., Kojta, A. K., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Danisiewicz-Czupryńska, D., Lenz, E., & Nnorom, I. C. (2012b). Mercury in Common Chanterelles mushrooms: Cantharellus spp. update. Food Chemistry, 133, 842–850. DOI: 10.1016/j.foodchem.2012.01.10 http://dx.doi.org/10.1016/j.foodchem.2012.01.102CrossrefGoogle Scholar

  • [42] Falandysz, J., & Borovička, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology, 97, 477–501. DOI: 10.1007/s00253-012-4552-8. http://dx.doi.org/10.1007/s00253-012-4552-8CrossrefGoogle Scholar

  • [43] Frankowska, A., Ziółkowska, J., Bielawski, L., & Falandysz, J. (2010). Profile and bioconcentration of minerals by King Bolete (Boletes edulis) from the Płocka Dale in Poland. Food Additives and Contaminants, Part B: Surveillance, 3, 1–6. DOI: 10.1080/19440040903505232. http://dx.doi.org/10.1080/19440040903505232CrossrefGoogle Scholar

  • [44] García, M. A., Alonso, J., Fernández, M. I., & Melgar, M. J. (1998). Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Archives of Environmental Contamination and Toxicology, 34, 330–335. DOI: 10.1007/s002449900326. http://dx.doi.org/10.1007/s002449900326CrossrefGoogle Scholar

  • [45] García, M. á., Alonso, J., & Melgar, M. J. (2009). Lead in edible mushrooms. Levels and bioconcentration factors. Journal of Hazardous Materials, 167, 777–783. DOI: 10.1016/j.jhazmat.2009.01.058. http://dx.doi.org/10.1016/j.jhazmat.2009.01.058CrossrefGoogle Scholar

  • [46] Gumińska, B., & Wojewoda, W. (1988). Grzyby i ich oznaczanie. Warszawa, Poland: Pánstwowe Wydawnictwo Rolnicze i Lésne. (in Polish) Google Scholar

  • [47] Jarzyńska, G., & Falandysz, J. (2011a). The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 46, 569–573. DOI: 10.1080/10934529.2011.562816. http://dx.doi.org/10.1080/10934529.2011.562816CrossrefGoogle Scholar

  • [48] Jarzyńska, G., & Falandysz, J. (2011b). Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus) — consequences to human health. Environment International, 37, 882–888. DOI: 10.1016/j.envint.2011.02.017. http://dx.doi.org/10.1016/j.envint.2011.02.017CrossrefGoogle Scholar

  • [49] JECFA (1978). Evaluation of certain food additives and contaminants. Twenty-second report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: WHO Technical Report Series 631. Google Scholar

  • [50] JECFA (2007). Evaluation of certain food additives and contaminants. Sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: WHO Technical Report Series 940. Google Scholar

  • [51] Li, T., Zhang, J., Shen, T., Shi, Y. D., Yang, S. B., Zhang, T., Li, J. Q., Wang, Y. Z., & Liu, H. (2013). Mineral element content in prized matsutake mushroom (Tricholoma matsutake) collected in China. Chemical Papers, 67, 672–678. DOI: 10.2478/s11696-013-0353-5. http://dx.doi.org/10.2478/s11696-013-0353-5CrossrefGoogle Scholar

  • [52] Melgar, M. J., Alonso, J., Pérez-López, M., & García, M. A. (1998). Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 33, 439–455. DOI: 10.1080/03601239809373156. http://dx.doi.org/10.1080/03601239809373156CrossrefGoogle Scholar

  • [53] Melgar, M. J., Alonso, J., & García, M. A. (2007). Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Science of the Total Environment, 385, 12–19. DOI: 10.1016/j.scitotenv.2007.07.011. http://dx.doi.org/10.1016/j.scitotenv.2007.07.011CrossrefGoogle Scholar

  • [54] Melgar, M. J., Alonso, J., & García, M. A. (2009). Mercury in edible mushrooms and soil: Bioconcentration factors and toxicological risk. Science of the Total Environment, 407, 5328–5334. DOI: 10.1016/j.scitotenv.2009.07.001. http://dx.doi.org/10.1016/j.scitotenv.2009.07.001CrossrefGoogle Scholar

  • [55] Paoletti, E., & Günthondt-Georg, M. S. (2006). Growth responses and element content of Quercus pubescens seedlings under acidic and heavy metal contamination. Forest Snow Lands Research, 80, 323–337. Google Scholar

  • [56] Rose, M., Baxter, M., Brereton, N., & Baskaran, C. (2010). Dietary exposure to metals and other elements in the 2006 UK Total Diet Study and some trends over the last 30 years. Food Additives & Contaminants: Part A, 27, 1380–1404. DOI: 10.1080/19440049.2010.496794. http://dx.doi.org/10.1080/19440049.2010.496794CrossrefGoogle Scholar

  • [57] Schultz, H., & Breidenbach, A. W. (1988). United States environmental protection agency peer review workshop on mercury issues, October 26–27, 1987: Summary Report. Washington, DC, USA: U.S. Environmental Protection Agency. Google Scholar

  • [58] Stijve, T., & Roschnik, R. (1974). Mercury and methyl mercury content of different species of fungi. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 65, 209–220. Google Scholar

  • [59] Stijve, T. (1992). Certain mushrooms do accumulate heavy metals. Mushroom, the Journal of Wild Mushrooming, 38, 9–14. Google Scholar

  • [60] Szubstarska, J., Jarzyńska, G., & Falandysz, J. (2012). Trace elements of Variegated Boletes (Suillus variegatus) fungi. Chemical Papers, 66, 1026–1032. DOI: 10.2478/s11696-012-0216-5. http://dx.doi.org/10.2478/s11696-012-0216-5CrossrefGoogle Scholar

  • [61] Vetter, J., & Siller, I. (1997). Ásványi anyagok mennyiségének alakulása a gomba termötestben (Macrolepiota procera). Mikológiai Közlemények, 36, 33–38. (in Hungarian) Google Scholar

  • [62] WHO (1989). Toxicological evaluation of certain food additives and contaminants. 33rd Report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: Food Additives Series No. 24. Google Scholar

  • [63] WHO (1993). Evaluation of certain food additives and contaminants. 41st Report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: Technical Report Series No. 837. Google Scholar

  • [64] Wyrzykowska, B., Szymczyk, K., Ichichashi, H., Falandysz, J., Skwarzec, B., & Yamasaki, S. (2001). Application of ICP sector fieldMS and principal component analysis for studying interdependences among 23 trace elements in Polish beers. Journal of Agricultural and Food Chemistry, 49, 3425–3431. DOI: 10.1021/jf010184g. http://dx.doi.org/10.1021/jf010184gCrossrefGoogle Scholar

  • [65] Zhang, D., Frankowska, A., Jarzyńska, G., Kojta, A. K., Drewnowska, M., Wydmánska, D., Bielawski, L., Wang, J. P., & Falandysz, J. (2010). Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. African Journal of Agricultural Research, 5, 3050–3055. Google Scholar

  • [66] Zimmermannová, K., Svoboda, L., & Kalač, P. (2001). Mercury, cadmium, lead and copper contents in fruiting bodies of selected edible mushrooms in contaminated Middle Spiš region, Slovakia. Ekológia (Bratislava), 20, 440–446. Google Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2014-04-01


Citation Information: Chemical Papers, Volume 68, Issue 4, Pages 484–492, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0477-7.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in