Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

See all formats and pricing
More options …
Volume 68, Issue 4 (Apr 2014)


Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level

Imran Ali / Waseem Wani / Kishwar Saleem / Ming-Fa Hsieh
  • Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, 32023, Taiwan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s11696-013-0486-6


Due to an increasing demand for effective anti-cancer drugs, an oxopyrrolidine-based ligand, sodium 1-(3-(2-aminoethylamino)propyl)-5-oxopyrrolidine-2-carboxylate, was synthesised by the sodium hydride-assisted coupling of pyroglutamic acid with 1,3-diiodopropane under a nitrogen atmosphere. The intermediate thus formed was allowed to react with ethylenediamine in acetonitrile. The ligand formed individual complexes with Cu(II) and Ni(II) metal ions, respectively. The complexes were relatively resistant to degradation in PBS at physiological pH. The DNA-binding constants (K b) for the ligand, copper and nickel complexes were 2.09 × 104 M-1, 2.37 × 104 M-1 and 2.11 × 104 M-1, respectively, revealing the strong binding of these complexes with DNA. Haemolysis assays indicated that the ligand and its complexes were less toxic to rabbit RBCs than doxorubicin. Lipinski’s parameters calculated for the reported compounds indicated their good oral bioavailability. All the compounds exhibited good activities towards MCF-7 (wild type) cancer cell lines. The results of in silico studies, DNA-binding and anti-cancer activities indicated that the reported compounds might be interacting with DNA as one of their possible mechanisms of action.

Keywords: oxopyrrolidine-based ligand; DNA-binding; in silico studies; haemolysis assays; anticancer profiles; supra-molecular mechanism of action

  • [1] Abdel-Rahman, L. H., Battaglia, L. P., & Mahmoud, M. R. (1996). Synthesis, characterization and stability constant determination of l-phenylalanine ternary complexes of cobalt(II), nickel(II), copper(II) with N-heterocyclic aromatic bases and X-ray crystal structure of aqua-1,10-phenanthroline-l-phenylalaninato copper(II) perchlorate complex. Polyhedron, 15, 327–334. DOI: 10.1016/0277-5387(95)00157-n. http://dx.doi.org/10.1016/0277-5387(95)00157-NCrossrefGoogle Scholar

  • [2] Ali, I., Rahis-ud-din, Saleem, K., Aboul-Enein, H. Y., & Rather, A. (2011a). Social aspects of cancer genesis. Cancer Therapy, 8, 6–14. Google Scholar

  • [3] Ali, I., Rahis-ud-din, Salim, K., Rather, M. A., Wani, W. A., & Haque, A. (2011b). Advances in nanodrugs for cancer chemotherapy. Current Cancer Drug Targets, 11, 135–146. DOI: 10.2174/156800911794328493. http://dx.doi.org/10.2174/156800911794328493CrossrefGoogle Scholar

  • [4] Ali, I., Wani, W. A., & Saleem, K. (2011c). Cancer scenario in India with future perspectives. Cancer Therapy, 8, 56–70. Google Scholar

  • [5] Ali, I., Wani, W. A., Saleem, K., & Haque, A. (2013a). Platinum compounds: A hope for future cancer chemotherapy. Anticancer Agents in Medicinal Chemistry, 13, 296–306. DOI: 10.2174/1871520611313020016. http://dx.doi.org/10.2174/1871520611313020016CrossrefGoogle Scholar

  • [6] Ali, I., Wani, W. A., Saleem, K., & Wesselinova, D. (2013b). Syntheses, DNA binding and anticancer profiles of Lglutamic acid ligand and its copper(II) and ruthenium(III) complexes. Medicinal Chemistry, 9, 11–22. DOI: 10.2174/1573406411309010011. http://dx.doi.org/10.2174/157340613804488297CrossrefGoogle Scholar

  • [7] Ali, I., Wani, W. A., Saleem, K., & Hseih, M. F. (2013c). Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron, 56, 134–143. DOI: 10.1016/j.poly.2013.03.056. http://dx.doi.org/10.1016/j.poly.2013.03.056CrossrefGoogle Scholar

  • [8] Ali, I., Haque, A., Saleem, K., & Hsieh, M. F. (2013d). Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorganic & Medicinal Chemistry, 21, 3808–3820. DOI: 10.1016/j.bmc.2013.04.018. http://dx.doi.org/10.1016/j.bmc.2013.04.018CrossrefGoogle Scholar

  • [9] Arjmand, F., Aziz, M., & Chauhan, M. (2008). Synthesis, spectroscopic studies of new water-soluble Co(II) and Cu(II) macrocyclic complexes of 4,15-bis(2-hydroxyethyl)-2,4,6,13,15,17-hexaazatricyclodocosane: their interaction studies with calf thymus DNA and guanosine 5’ monophosphate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 61, 265–278. DOI: 10.1007/s10847-008-9417-5. http://dx.doi.org/10.1007/s10847-008-9417-5CrossrefGoogle Scholar

  • [10] Arjmand, F., Jamsheera, A., & Mohapatra, D. K. (2013). Synthesis, characterization and in vitro DNA binding and cleavage studies of Cu(II)/Zn(II) dipeptide complexes. Journal of Photochemistry and Photobiology B: Biology, 121, 75–85. DOI: 10.1016/j.jphotobiol.2012.12.009. http://dx.doi.org/10.1016/j.jphotobiol.2012.12.009CrossrefGoogle Scholar

  • [11] ASTM International (2000). Standard practice for assessment of hemolytic properties of materials. ASTM F756-00. West Conshohocken, PA, USA: ASTM. DOI: 10.1520/f0756-00. CrossrefGoogle Scholar

  • [12] Bacac, M., Hotze, A. C. G., van der Schilden, K., Haasnoot, J. G., Pacor, S., Alessio, E., Sava, G., & Reedijk, J. (2004). The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. Journal of Inorganic Biochemistry, 98, 402–412. DOI: 10.1016/j.jinorgbio.2003.12.003. http://dx.doi.org/10.1016/j.jinorgbio.2003.12.003CrossrefGoogle Scholar

  • [13] Bello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestrero, A., Dupuis, M., Sordat, B., Nencioni, A., & Vogel, P. (2010). Novel 2-[(benzylamino)methyl]pyrrolidine-3,4-diol derivatives as α-mannosidase inhibitors and with antitumor activities against hematological and solid malignancies. Bioorganic & Medicinal Chemistry, 18, 3320–3334. DOI: 10.1016/j.bmc.2010.03.009. http://dx.doi.org/10.1016/j.bmc.2010.03.009Google Scholar

  • [14] Buschini, A., Pinelli, S., Pellacani, C., Giordani, F., Ferrari, M. B., Bisceglie, F., Gianetto, M., Pelosi, G., & Tarasconi, P. (2009). Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity. Journal of Inorganic Biochemistry, 103, 666–677. DOI: 10.1016/j.jinorgbio.2008.12.016. http://dx.doi.org/10.1016/j.jinorgbio.2008.12.016CrossrefGoogle Scholar

  • [15] Chaudhary, A., & Singh, R. V. (2004). Synthetic, spectroscopic and toxicological aspects of novel eighteen to twenty two membered tetraazamacrocycles and their bivalent manganese complexes. Indian Journal of Chemistry, Section A, 43A, 2529–2535. Google Scholar

  • [16] Chauhan, M., & Arjmand, F. (2006). Chiral and achiral macrocyclic copper(II) complexes: synthesis, characterization, and comparative binding studies with calf-thymus DNA. Chemistry & Biodiversity, 3, 660–676. DOI: 10.1002/cbdv.200690069. http://dx.doi.org/10.1002/cbdv.200690069CrossrefGoogle Scholar

  • [17] Chen, J. N., Huang, Y. W., Liu, G. S., Afrasiabi, Z., Sinn, E., Padhye, S., & Ma, Y. F. (2004). The cytotoxicity and mechanisms of 1,2-naphthoquinone thiosemicarbazone and its metal derivatives against MCF-7 human breast cancer cells. Toxicology and Appied Pharmacology, 197, 40–48. DOI: 10.1016/j.taap.2004.02.004. http://dx.doi.org/10.1016/j.taap.2004.02.004CrossrefGoogle Scholar

  • [18] Fiaux, H., Kuntz, D. A., Hoffman, D., Janzer, R. C., Gerber-Lemaire, S., Rose, D. R., & Juillerat-Jeanneret, L. (2008). Functionalized pyrrolidine inhibitors of human type II α-mannosidases as anti-cancer agents: Optimizing the fit to the active site. Bioorganic & Medicinal Chemistry, 16, 7337–7346. DOI: 10.1016/j.bmc.2008.06.021. http://dx.doi.org/10.1016/j.bmc.2008.06.021CrossrefGoogle Scholar

  • [19] Groessl, M., Hartinger, C. G., Dyson, P. J., & Keppler, B. K. (2008). CZE-ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP. Journal of Inorganic Biochemistry, 102, 1060–1065. DOI: 10.1016/j.jinorgbio.2007.11.018. http://dx.doi.org/10.1016/j.jinorgbio.2007.11.018CrossrefGoogle Scholar

  • [20] Guo, J., Zhang, Y. J., Zhang, J., Liang, J., Zeng, L. H., & Guo, G. Z. (2012). Anticancer effect of tert-butyl-2(4,5- dihydrogen-4,4,5,5-tetramethyl-3-O-1H-imidazole-3-cationic-1-oxyl-2)-pyrrolidine-1-carboxylic ester on human hepatoma HepG2 cell line. Chemico-Biological Interactions, 199, 38–48. DOI: 10.1016/j.cbi.2012.06.001. http://dx.doi.org/10.1016/j.cbi.2012.06.001CrossrefGoogle Scholar

  • [21] Hsu, C. W., Kuo, C. F., Chuang, S. M., & Hou, M. H. (2013). Elucidation of the DNA-interacting properties and anticancer activity of a Ni(II)-coordinated mithramycin dimer complex. BioMetals, 26, 1–12. DOI: 10.1007/s10534-012-9589-8. http://dx.doi.org/10.1007/s10534-012-9589-8CrossrefGoogle Scholar

  • [22] Kemp, W. (1975). Organic spectroscopy. London, UK: Macmillan Press. Google Scholar

  • [23] Krushna, Ch., Mohapatra, C., & Dash, K. C. (1977). 4-, 5-and 6-coordinate complexes of copper(II) with substituted imidazoles. Journal of Inorganic and Nuclear Chemistry, 39, 1253–1258. DOI: 10.1016/0022-1902(77)80363-1. http://dx.doi.org/10.1016/0022-1902(77)80363-1CrossrefGoogle Scholar

  • [24] Küng, A., Pieper, T., Wissiack, R., Rosenberg, E., & Keppler, B. K. (2001). Hydrolysis of the tumor-inhibiting ruthenium(III) complexes HIm trans-[RuCl4(im)2] and H Ind trans-[RuCl4(ind)2] investigated by means of HPCE and HPLC-MS. Journal of Biological Inorganic Chemistry, 6, 292–299. DOI: 10.1007/s007750000203. http://dx.doi.org/10.1007/s007750000203CrossrefGoogle Scholar

  • [25] Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26. DOI: 10.1016/s0169-409x(00)00129-0. http://dx.doi.org/10.1016/S0169-409X(00)00129-0CrossrefGoogle Scholar

  • [26] Marmur, J. (1961). Procedure for the isolation of deoxyribonucleic acid from microorganism. Journal of Molecular Biology, 3, 208–218. DOI: 10.1016/s0022-2836(61)80047-8. http://dx.doi.org/10.1016/S0022-2836(61)80047-8CrossrefGoogle Scholar

  • [27] Marzano, C., Pellei, M., Tisato, F., & Santini, C. (2009). Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry, 9, 185–211. DOI: 10.2174/187152009787313837. http://dx.doi.org/10.2174/187152009787313837CrossrefGoogle Scholar

  • [28] Mathew, V., Keshavayya, J., Vaidya, V. P., & Khan, M. H. M. (2008). Triazoles as complexing agents: synthesis, characterization and pharmacological activities of copper complexes of 4-amino-3-mercapto-5-substituted aryl-1,2,4- triazoles. Journal of Coordination Chemistry, 61, 2629–2638. DOI: 10.1080/00958970801950615. http://dx.doi.org/10.1080/00958970801950615CrossrefGoogle Scholar

  • [29] Mathur, S., & Tabassum, S. (2008). Template synthesis of novel carboxamide dinuclear copper(II) complex: spectral characterization and reactivity towards calf-thymus DNA. BioMetals, 21, 299–310. DOI: 10.1007/s10534-007-9119-2. http://dx.doi.org/10.1007/s10534-007-9119-2CrossrefGoogle Scholar

  • [30] Morris, G. M., Goodsell, G. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662. DOI: 10.1002/(sici)1096-987x(19981115)19:14〈1639::aid-jcc10〉3.0.co;2-b. http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BCrossrefGoogle Scholar

  • [31] Mosman, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4. http://dx.doi.org/10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • [32] Muegge, I. (2003). Selection criteria for drug-like compounds. Medicinal Research Reviews, 23, 302–321. DOI: 10.1002/med.10041. http://dx.doi.org/10.1002/med.10041CrossrefGoogle Scholar

  • [33] Nakamoto, K. (1970). Infrared spectra of inorganic and coordination compounds. New York, NY, USA: Wiley. Google Scholar

  • [34] Nogrady, T. (1985). Medicinal chemistry: a biochemical approach. New York, NY, USA: Oxford University press. Google Scholar

  • [35] Ott, I., & Gust, R. (2007). Non platinum metal complexes as anti-cancer drugs. Archiv der Pharmazie, 340, 117–126. DOI 10.1002/ardp.200600151. http://dx.doi.org/10.1002/ardp.200600151CrossrefGoogle Scholar

  • [36] Parveen, S., & Arjmand, F. (2012). De novo design, synthesis and spectroscopic characterization of chiral benzimidazole-derived amino acid Zn(II) complexes: Development of tryptophan-derived specific hydrolytic DNA artificial nuclease agent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85, 53–60. DOI: 10.1016/j.saa.2011.09.006. http://dx.doi.org/10.1016/j.saa.2011.09.006CrossrefGoogle Scholar

  • [37] Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. DOI: 10.1002/jcc.20084. http://dx.doi.org/10.1002/jcc.20084CrossrefGoogle Scholar

  • [38] Qu, J. Q., Qu, L., Yang, Q. H., & Wang, L. F. (2009). Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide. Chemical Papers, 63, 426–431. DOI: 10.2478/s11696-009-0033-7. http://dx.doi.org/10.2478/s11696-009-0033-7CrossrefGoogle Scholar

  • [39] Rau, T., & van Eldik, R. (1996). Metal ions in biological systems. New York, NY, USA: Marcel Dekker. Google Scholar

  • [40] Refsgaard, H. H. F., Jensen, B. F., Brockhoff, P. B., Padkjær, S. B., Guldbrandt, M., & Christensen, M. S. (2005). In silico prediction of membrane permeability from calculated molecular parameters. Journal of Medicinal Chemistry, 48, 805–811. DOI: 10.1021/jm049661n. http://dx.doi.org/10.1021/jm049661nCrossrefGoogle Scholar

  • [41] Reichmann, M. F., Rice, S. A., Thomas, C. A., & Doty, P. (1954). A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society, 76, 3047–3053. DOI: 10.1021/ja01640a067. http://dx.doi.org/10.1021/ja01640a067CrossrefGoogle Scholar

  • [42] Ruiz-Azuara, L., & Bravo-Gomez, M. E. (2010). Copper compounds in cancer chemotherapy. Current Medicinal Chemistry, 17, 3606–3615. DOI: 10.2174/092986710793213751. http://dx.doi.org/10.2174/092986710793213751CrossrefGoogle Scholar

  • [43] Saleem, K., Wani, W. A., Haque, A., Lone, M. N., Hsieh, M. F., Jairajpuri, M. A., & Ali, I. (2013). Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Medicinal Chemistry, 5, 135–146. DOI: 10.4155/fmc.12.201. http://dx.doi.org/10.4155/fmc.12.201CrossrefGoogle Scholar

  • [44] Sanner, M. F. (1999). Python: a programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17, 57–61. Google Scholar

  • [45] Sayes, C. M., Reed, K. L., & Warheit, D. B. (2007). Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sciences, 97, 163–180. DOI: 10.1093/toxsci/kfm018. http://dx.doi.org/10.1093/toxsci/kfm018CrossrefGoogle Scholar

  • [46] Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30. DOI: 10.3322/caac.21166. CrossrefGoogle Scholar

  • [47] Stephenson, T. A., Morehouse, S. M., Powell, A. R., Heffer, J. P., & Wilkinson, G. (1965). Carboxylates of palladium, platinum, and rhodium, and their adducts. Journal of the Chemical Society, 1965, 3632–3640. DOI: 10.1039/jr9650003632. http://dx.doi.org/10.1039/jr9650003632CrossrefGoogle Scholar

  • [48] Stephenson, T. A., & Wilkinson, G. (1967). Acetato complexes of palladium(II). Journal of Inorganic and Nuclear Chemistry, 29, 2122–2123. DOI: 10.1016/0022-1902(67)80480-9. http://dx.doi.org/10.1016/0022-1902(67)80480-9CrossrefGoogle Scholar

  • [49] Tan, S. J., Yan, Y. K., Lee, P. P. F., & Lim, K. H. (2010a). Copper, gold and silver compounds as potential new antitumor metallodrugs. Future Medicinal Chemistry, 2, 1591–1608. DOI: 10.4155/fmc.10.234. http://dx.doi.org/10.4155/fmc.10.234CrossrefGoogle Scholar

  • [50] Tan, J., Zhu, L. C., & Wang, B. (2010b). From GC-rich DNA binding to the repression of survivin gene for quercetin nickel(II) complex: implications for cancer therapy. BioMetals, 23, 1075–1084. DOI: 10.1007/s10534-010-9353-x. http://dx.doi.org/10.1007/s10534-010-9353-xCrossrefGoogle Scholar

  • [51] Tan, C. P., Hu, S., Liu, J., & Ji, L. N. (2011). Synthesis, characterization, antiproliferative and anti-metastatic properties of two ruthenium-DMSO complexes containing 2,2’-biimidazole. European Journal of Medicinal Chemistry, 46, 1555–1563. DOI: 10.1016/j.ejmech.2011.01.074. http://dx.doi.org/10.1016/j.ejmech.2011.01.074CrossrefGoogle Scholar

  • [52] Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623. DOI: 10.1021/jm020017n. http://dx.doi.org/10.1021/jm020017nCrossrefGoogle Scholar

  • [53] Wang, Y., & Yang, Z. Y. (2005). Synthesis, characterization and DNA-binding properties of three 3d transition metal complexes of the Schiff base derived from diethenetriamine with PMBP. Transition Metal Chemistry, 30, 902–906. DOI: 10.1007/s11243-005-6298-y. http://dx.doi.org/10.1007/s11243-005-6298-yCrossrefGoogle Scholar

  • [54] Wolfe, A., Shimer, G. H., & Meehan, T. (1987). Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 26, 6392–6296. DOI: 10.1021/bi00394a013. http://dx.doi.org/10.1021/bi00394a013CrossrefGoogle Scholar

  • [55] Xu, Z. D., Liu, H., Xiao, S. L., Yang, M., & Bu, X. H. (2002). Synthesis, crystal structure, antitumor activity and DNA-binding study on the Mn(II) complex of 2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline. Journal of Inorganic Biochemistry, 90, 79–84. DOI: 10.1016/s0162-0134(02)00416-6. http://dx.doi.org/10.1016/S0162-0134(02)00416-6CrossrefGoogle Scholar

  • [56] Zhang, Y. J., Guo, J., Zeng, L. H., Zhang, J., Hui, Y. P., Liu, J. Y., Qing, X. Y., Sun, X. L., & Guo, G. Z. (2011). Tert-butyl-2(4,5-dihydrogen-4,4,5,5-tetramethyl-3-O-1H-imidazole-3-cationic-1-oxyl-2-pyrrolidine-1-carboxylic ester displays novel cytotoxicity through reactive oxygen species-mediated oxidative damage in MCF-7 and MDAMB-231 cells. Chemico-Biological Interactions, 192, 287–297. DOI: 10.1016/j.cbi.2011.04.006. http://dx.doi.org/10.1016/j.cbi.2011.04.006CrossrefGoogle Scholar

  • [57] Zheng, Y. J., Li, X. W., Li, Y. T., Wu, Z. Y., & Yan, C. W. (2012). Synthesis, structure, anticancer activities, and DNA-binding properties of a 1-D polymeric copper(II) complex alternately bridged by oxamide and terephthalate. Journal of Coordination Chemistry, 65, 3530–3545. DOI: 10.1080/00958972.2012.719609. http://dx.doi.org/10.1080/00958972.2012.719609CrossrefGoogle Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2014-04-01

Citation Information: Chemical Papers, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0486-6.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in