Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 20, 2013

Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level

  • Imran Ali EMAIL logo , Waseem Wani , Kishwar Saleem and Ming-Fa Hsieh
From the journal Chemical Papers

Abstract

Due to an increasing demand for effective anti-cancer drugs, an oxopyrrolidine-based ligand, sodium 1-(3-(2-aminoethylamino)propyl)-5-oxopyrrolidine-2-carboxylate, was synthesised by the sodium hydride-assisted coupling of pyroglutamic acid with 1,3-diiodopropane under a nitrogen atmosphere. The intermediate thus formed was allowed to react with ethylenediamine in acetonitrile. The ligand formed individual complexes with Cu(II) and Ni(II) metal ions, respectively. The complexes were relatively resistant to degradation in PBS at physiological pH. The DNA-binding constants (K b) for the ligand, copper and nickel complexes were 2.09 × 104 M-1, 2.37 × 104 M-1 and 2.11 × 104 M-1, respectively, revealing the strong binding of these complexes with DNA. Haemolysis assays indicated that the ligand and its complexes were less toxic to rabbit RBCs than doxorubicin. Lipinski’s parameters calculated for the reported compounds indicated their good oral bioavailability. All the compounds exhibited good activities towards MCF-7 (wild type) cancer cell lines. The results of in silico studies, DNA-binding and anti-cancer activities indicated that the reported compounds might be interacting with DNA as one of their possible mechanisms of action.

[1] Abdel-Rahman, L. H., Battaglia, L. P., & Mahmoud, M. R. (1996). Synthesis, characterization and stability constant determination of l-phenylalanine ternary complexes of cobalt(II), nickel(II), copper(II) with N-heterocyclic aromatic bases and X-ray crystal structure of aqua-1,10-phenanthroline-l-phenylalaninato copper(II) perchlorate complex. Polyhedron, 15, 327–334. DOI: 10.1016/0277-5387(95)00157-n. http://dx.doi.org/10.1016/0277-5387(95)00157-N10.1016/0277-5387(95)00157-NSearch in Google Scholar

[2] Ali, I., Rahis-ud-din, Saleem, K., Aboul-Enein, H. Y., & Rather, A. (2011a). Social aspects of cancer genesis. Cancer Therapy, 8, 6–14. Search in Google Scholar

[3] Ali, I., Rahis-ud-din, Salim, K., Rather, M. A., Wani, W. A., & Haque, A. (2011b). Advances in nanodrugs for cancer chemotherapy. Current Cancer Drug Targets, 11, 135–146. DOI: 10.2174/156800911794328493. http://dx.doi.org/10.2174/15680091179432849310.2174/156800911794328493Search in Google Scholar PubMed

[4] Ali, I., Wani, W. A., & Saleem, K. (2011c). Cancer scenario in India with future perspectives. Cancer Therapy, 8, 56–70. Search in Google Scholar

[5] Ali, I., Wani, W. A., Saleem, K., & Haque, A. (2013a). Platinum compounds: A hope for future cancer chemotherapy. Anticancer Agents in Medicinal Chemistry, 13, 296–306. DOI: 10.2174/1871520611313020016. http://dx.doi.org/10.2174/187152061131302001610.2174/1871520611313020016Search in Google Scholar PubMed

[6] Ali, I., Wani, W. A., Saleem, K., & Wesselinova, D. (2013b). Syntheses, DNA binding and anticancer profiles of Lglutamic acid ligand and its copper(II) and ruthenium(III) complexes. Medicinal Chemistry, 9, 11–22. DOI: 10.2174/1573406411309010011. http://dx.doi.org/10.2174/15734061380448829710.2174/1573406411309010011Search in Google Scholar

[7] Ali, I., Wani, W. A., Saleem, K., & Hseih, M. F. (2013c). Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron, 56, 134–143. DOI: 10.1016/j.poly.2013.03.056. http://dx.doi.org/10.1016/j.poly.2013.03.05610.1016/j.poly.2013.03.056Search in Google Scholar

[8] Ali, I., Haque, A., Saleem, K., & Hsieh, M. F. (2013d). Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorganic & Medicinal Chemistry, 21, 3808–3820. DOI: 10.1016/j.bmc.2013.04.018. http://dx.doi.org/10.1016/j.bmc.2013.04.01810.1016/j.bmc.2013.04.018Search in Google Scholar PubMed

[9] Arjmand, F., Aziz, M., & Chauhan, M. (2008). Synthesis, spectroscopic studies of new water-soluble Co(II) and Cu(II) macrocyclic complexes of 4,15-bis(2-hydroxyethyl)-2,4,6,13,15,17-hexaazatricyclodocosane: their interaction studies with calf thymus DNA and guanosine 5’ monophosphate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 61, 265–278. DOI: 10.1007/s10847-008-9417-5. http://dx.doi.org/10.1007/s10847-008-9417-510.1007/s10847-008-9417-5Search in Google Scholar

[10] Arjmand, F., Jamsheera, A., & Mohapatra, D. K. (2013). Synthesis, characterization and in vitro DNA binding and cleavage studies of Cu(II)/Zn(II) dipeptide complexes. Journal of Photochemistry and Photobiology B: Biology, 121, 75–85. DOI: 10.1016/j.jphotobiol.2012.12.009. http://dx.doi.org/10.1016/j.jphotobiol.2012.12.00910.1016/j.jphotobiol.2012.12.009Search in Google Scholar PubMed

[11] ASTM International (2000). Standard practice for assessment of hemolytic properties of materials. ASTM F756-00. West Conshohocken, PA, USA: ASTM. DOI: 10.1520/f0756-00. 10.1520/F0756-00Search in Google Scholar

[12] Bacac, M., Hotze, A. C. G., van der Schilden, K., Haasnoot, J. G., Pacor, S., Alessio, E., Sava, G., & Reedijk, J. (2004). The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. Journal of Inorganic Biochemistry, 98, 402–412. DOI: 10.1016/j.jinorgbio.2003.12.003. http://dx.doi.org/10.1016/j.jinorgbio.2003.12.00310.1016/j.jinorgbio.2003.12.003Search in Google Scholar PubMed

[13] Bello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestrero, A., Dupuis, M., Sordat, B., Nencioni, A., & Vogel, P. (2010). Novel 2-[(benzylamino)methyl]pyrrolidine-3,4-diol derivatives as α-mannosidase inhibitors and with antitumor activities against hematological and solid malignancies. Bioorganic & Medicinal Chemistry, 18, 3320–3334. DOI: 10.1016/j.bmc.2010.03.009. http://dx.doi.org/10.1016/j.bmc.2010.03.00910.1016/j.bmc.2010.03.009Search in Google Scholar

[14] Buschini, A., Pinelli, S., Pellacani, C., Giordani, F., Ferrari, M. B., Bisceglie, F., Gianetto, M., Pelosi, G., & Tarasconi, P. (2009). Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity. Journal of Inorganic Biochemistry, 103, 666–677. DOI: 10.1016/j.jinorgbio.2008.12.016. http://dx.doi.org/10.1016/j.jinorgbio.2008.12.01610.1016/j.jinorgbio.2008.12.016Search in Google Scholar

[15] Chaudhary, A., & Singh, R. V. (2004). Synthetic, spectroscopic and toxicological aspects of novel eighteen to twenty two membered tetraazamacrocycles and their bivalent manganese complexes. Indian Journal of Chemistry, Section A, 43A, 2529–2535. Search in Google Scholar

[16] Chauhan, M., & Arjmand, F. (2006). Chiral and achiral macrocyclic copper(II) complexes: synthesis, characterization, and comparative binding studies with calf-thymus DNA. Chemistry & Biodiversity, 3, 660–676. DOI: 10.1002/cbdv.200690069. http://dx.doi.org/10.1002/cbdv.20069006910.1002/cbdv.200690069Search in Google Scholar

[17] Chen, J. N., Huang, Y. W., Liu, G. S., Afrasiabi, Z., Sinn, E., Padhye, S., & Ma, Y. F. (2004). The cytotoxicity and mechanisms of 1,2-naphthoquinone thiosemicarbazone and its metal derivatives against MCF-7 human breast cancer cells. Toxicology and Appied Pharmacology, 197, 40–48. DOI: 10.1016/j.taap.2004.02.004. http://dx.doi.org/10.1016/j.taap.2004.02.00410.1016/j.taap.2004.02.004Search in Google Scholar

[18] Fiaux, H., Kuntz, D. A., Hoffman, D., Janzer, R. C., Gerber-Lemaire, S., Rose, D. R., & Juillerat-Jeanneret, L. (2008). Functionalized pyrrolidine inhibitors of human type II α-mannosidases as anti-cancer agents: Optimizing the fit to the active site. Bioorganic & Medicinal Chemistry, 16, 7337–7346. DOI: 10.1016/j.bmc.2008.06.021. http://dx.doi.org/10.1016/j.bmc.2008.06.02110.1016/j.bmc.2008.06.021Search in Google Scholar

[19] Groessl, M., Hartinger, C. G., Dyson, P. J., & Keppler, B. K. (2008). CZE-ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP. Journal of Inorganic Biochemistry, 102, 1060–1065. DOI: 10.1016/j.jinorgbio.2007.11.018. http://dx.doi.org/10.1016/j.jinorgbio.2007.11.01810.1016/j.jinorgbio.2007.11.018Search in Google Scholar

[20] Guo, J., Zhang, Y. J., Zhang, J., Liang, J., Zeng, L. H., & Guo, G. Z. (2012). Anticancer effect of tert-butyl-2(4,5- dihydrogen-4,4,5,5-tetramethyl-3-O-1H-imidazole-3-cationic-1-oxyl-2)-pyrrolidine-1-carboxylic ester on human hepatoma HepG2 cell line. Chemico-Biological Interactions, 199, 38–48. DOI: 10.1016/j.cbi.2012.06.001. http://dx.doi.org/10.1016/j.cbi.2012.06.00110.1016/j.cbi.2012.06.001Search in Google Scholar

[21] Hsu, C. W., Kuo, C. F., Chuang, S. M., & Hou, M. H. (2013). Elucidation of the DNA-interacting properties and anticancer activity of a Ni(II)-coordinated mithramycin dimer complex. BioMetals, 26, 1–12. DOI: 10.1007/s10534-012-9589-8. http://dx.doi.org/10.1007/s10534-012-9589-810.1007/s10534-012-9589-8Search in Google Scholar

[22] Kemp, W. (1975). Organic spectroscopy. London, UK: Macmillan Press. Search in Google Scholar

[23] Krushna, Ch., Mohapatra, C., & Dash, K. C. (1977). 4-, 5-and 6-coordinate complexes of copper(II) with substituted imidazoles. Journal of Inorganic and Nuclear Chemistry, 39, 1253–1258. DOI: 10.1016/0022-1902(77)80363-1. http://dx.doi.org/10.1016/0022-1902(77)80363-110.1016/0022-1902(77)80363-1Search in Google Scholar

[24] Küng, A., Pieper, T., Wissiack, R., Rosenberg, E., & Keppler, B. K. (2001). Hydrolysis of the tumor-inhibiting ruthenium(III) complexes HIm trans-[RuCl4(im)2] and H Ind trans-[RuCl4(ind)2] investigated by means of HPCE and HPLC-MS. Journal of Biological Inorganic Chemistry, 6, 292–299. DOI: 10.1007/s007750000203. http://dx.doi.org/10.1007/s00775000020310.1007/s007750000203Search in Google Scholar PubMed

[25] Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26. DOI: 10.1016/s0169-409x(00)00129-0. http://dx.doi.org/10.1016/S0169-409X(00)00129-010.1016/S0169-409X(00)00129-0Search in Google Scholar

[26] Marmur, J. (1961). Procedure for the isolation of deoxyribonucleic acid from microorganism. Journal of Molecular Biology, 3, 208–218. DOI: 10.1016/s0022-2836(61)80047-8. http://dx.doi.org/10.1016/S0022-2836(61)80047-810.1016/S0022-2836(61)80047-8Search in Google Scholar

[27] Marzano, C., Pellei, M., Tisato, F., & Santini, C. (2009). Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry, 9, 185–211. DOI: 10.2174/187152009787313837. http://dx.doi.org/10.2174/18715200978731383710.2174/187152009787313837Search in Google Scholar

[28] Mathew, V., Keshavayya, J., Vaidya, V. P., & Khan, M. H. M. (2008). Triazoles as complexing agents: synthesis, characterization and pharmacological activities of copper complexes of 4-amino-3-mercapto-5-substituted aryl-1,2,4- triazoles. Journal of Coordination Chemistry, 61, 2629–2638. DOI: 10.1080/00958970801950615. http://dx.doi.org/10.1080/0095897080195061510.1080/00958970801950615Search in Google Scholar

[29] Mathur, S., & Tabassum, S. (2008). Template synthesis of novel carboxamide dinuclear copper(II) complex: spectral characterization and reactivity towards calf-thymus DNA. BioMetals, 21, 299–310. DOI: 10.1007/s10534-007-9119-2. http://dx.doi.org/10.1007/s10534-007-9119-210.1007/s10534-007-9119-2Search in Google Scholar

[30] Morris, G. M., Goodsell, G. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662. DOI: 10.1002/(sici)1096-987x(19981115)19:14〈1639::aid-jcc10〉3.0.co;2-b. http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BSearch in Google Scholar

[31] Mosman, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4. http://dx.doi.org/10.1016/0022-1759(83)90303-410.1016/0022-1759(83)90303-4Search in Google Scholar

[32] Muegge, I. (2003). Selection criteria for drug-like compounds. Medicinal Research Reviews, 23, 302–321. DOI: 10.1002/med.10041. http://dx.doi.org/10.1002/med.1004110.1002/med.10041Search in Google Scholar

[33] Nakamoto, K. (1970). Infrared spectra of inorganic and coordination compounds. New York, NY, USA: Wiley. Search in Google Scholar

[34] Nogrady, T. (1985). Medicinal chemistry: a biochemical approach. New York, NY, USA: Oxford University press. Search in Google Scholar

[35] Ott, I., & Gust, R. (2007). Non platinum metal complexes as anti-cancer drugs. Archiv der Pharmazie, 340, 117–126. DOI 10.1002/ardp.200600151. http://dx.doi.org/10.1002/ardp.20060015110.1002/ardp.200600151Search in Google Scholar

[36] Parveen, S., & Arjmand, F. (2012). De novo design, synthesis and spectroscopic characterization of chiral benzimidazole-derived amino acid Zn(II) complexes: Development of tryptophan-derived specific hydrolytic DNA artificial nuclease agent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85, 53–60. DOI: 10.1016/j.saa.2011.09.006. http://dx.doi.org/10.1016/j.saa.2011.09.00610.1016/j.saa.2011.09.006Search in Google Scholar

[37] Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. DOI: 10.1002/jcc.20084. http://dx.doi.org/10.1002/jcc.2008410.1002/jcc.20084Search in Google Scholar

[38] Qu, J. Q., Qu, L., Yang, Q. H., & Wang, L. F. (2009). Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide. Chemical Papers, 63, 426–431. DOI: 10.2478/s11696-009-0033-7. http://dx.doi.org/10.2478/s11696-009-0033-710.2478/s11696-009-0033-7Search in Google Scholar

[39] Rau, T., & van Eldik, R. (1996). Metal ions in biological systems. New York, NY, USA: Marcel Dekker. Search in Google Scholar

[40] Refsgaard, H. H. F., Jensen, B. F., Brockhoff, P. B., Padkjær, S. B., Guldbrandt, M., & Christensen, M. S. (2005). In silico prediction of membrane permeability from calculated molecular parameters. Journal of Medicinal Chemistry, 48, 805–811. DOI: 10.1021/jm049661n. http://dx.doi.org/10.1021/jm049661n10.1021/jm049661nSearch in Google Scholar

[41] Reichmann, M. F., Rice, S. A., Thomas, C. A., & Doty, P. (1954). A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society, 76, 3047–3053. DOI: 10.1021/ja01640a067. http://dx.doi.org/10.1021/ja01640a06710.1021/ja01640a067Search in Google Scholar

[42] Ruiz-Azuara, L., & Bravo-Gomez, M. E. (2010). Copper compounds in cancer chemotherapy. Current Medicinal Chemistry, 17, 3606–3615. DOI: 10.2174/092986710793213751. http://dx.doi.org/10.2174/09298671079321375110.2174/092986710793213751Search in Google Scholar

[43] Saleem, K., Wani, W. A., Haque, A., Lone, M. N., Hsieh, M. F., Jairajpuri, M. A., & Ali, I. (2013). Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Medicinal Chemistry, 5, 135–146. DOI: 10.4155/fmc.12.201. http://dx.doi.org/10.4155/fmc.12.20110.4155/fmc.12.201Search in Google Scholar

[44] Sanner, M. F. (1999). Python: a programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17, 57–61. Search in Google Scholar

[45] Sayes, C. M., Reed, K. L., & Warheit, D. B. (2007). Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sciences, 97, 163–180. DOI: 10.1093/toxsci/kfm018. http://dx.doi.org/10.1093/toxsci/kfm01810.1093/toxsci/kfm018Search in Google Scholar

[46] Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30. DOI: 10.3322/caac.21166. 10.3322/caac.21166Search in Google Scholar

[47] Stephenson, T. A., Morehouse, S. M., Powell, A. R., Heffer, J. P., & Wilkinson, G. (1965). Carboxylates of palladium, platinum, and rhodium, and their adducts. Journal of the Chemical Society, 1965, 3632–3640. DOI: 10.1039/jr9650003632. http://dx.doi.org/10.1039/jr965000363210.1039/jr9650003632Search in Google Scholar

[48] Stephenson, T. A., & Wilkinson, G. (1967). Acetato complexes of palladium(II). Journal of Inorganic and Nuclear Chemistry, 29, 2122–2123. DOI: 10.1016/0022-1902(67)80480-9. http://dx.doi.org/10.1016/0022-1902(67)80480-910.1016/0022-1902(67)80480-9Search in Google Scholar

[49] Tan, S. J., Yan, Y. K., Lee, P. P. F., & Lim, K. H. (2010a). Copper, gold and silver compounds as potential new antitumor metallodrugs. Future Medicinal Chemistry, 2, 1591–1608. DOI: 10.4155/fmc.10.234. http://dx.doi.org/10.4155/fmc.10.23410.4155/fmc.10.234Search in Google Scholar

[50] Tan, J., Zhu, L. C., & Wang, B. (2010b). From GC-rich DNA binding to the repression of survivin gene for quercetin nickel(II) complex: implications for cancer therapy. BioMetals, 23, 1075–1084. DOI: 10.1007/s10534-010-9353-x. http://dx.doi.org/10.1007/s10534-010-9353-x10.1007/s10534-010-9353-xSearch in Google Scholar

[51] Tan, C. P., Hu, S., Liu, J., & Ji, L. N. (2011). Synthesis, characterization, antiproliferative and anti-metastatic properties of two ruthenium-DMSO complexes containing 2,2’-biimidazole. European Journal of Medicinal Chemistry, 46, 1555–1563. DOI: 10.1016/j.ejmech.2011.01.074. http://dx.doi.org/10.1016/j.ejmech.2011.01.07410.1016/j.ejmech.2011.01.074Search in Google Scholar

[52] Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623. DOI: 10.1021/jm020017n. http://dx.doi.org/10.1021/jm020017n10.1021/jm020017nSearch in Google Scholar

[53] Wang, Y., & Yang, Z. Y. (2005). Synthesis, characterization and DNA-binding properties of three 3d transition metal complexes of the Schiff base derived from diethenetriamine with PMBP. Transition Metal Chemistry, 30, 902–906. DOI: 10.1007/s11243-005-6298-y. http://dx.doi.org/10.1007/s11243-005-6298-y10.1007/s11243-005-6298-ySearch in Google Scholar

[54] Wolfe, A., Shimer, G. H., & Meehan, T. (1987). Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 26, 6392–6296. DOI: 10.1021/bi00394a013. http://dx.doi.org/10.1021/bi00394a01310.1021/bi00394a013Search in Google Scholar

[55] Xu, Z. D., Liu, H., Xiao, S. L., Yang, M., & Bu, X. H. (2002). Synthesis, crystal structure, antitumor activity and DNA-binding study on the Mn(II) complex of 2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline. Journal of Inorganic Biochemistry, 90, 79–84. DOI: 10.1016/s0162-0134(02)00416-6. http://dx.doi.org/10.1016/S0162-0134(02)00416-610.1016/S0162-0134(02)00416-6Search in Google Scholar

[56] Zhang, Y. J., Guo, J., Zeng, L. H., Zhang, J., Hui, Y. P., Liu, J. Y., Qing, X. Y., Sun, X. L., & Guo, G. Z. (2011). Tert-butyl-2(4,5-dihydrogen-4,4,5,5-tetramethyl-3-O-1H-imidazole-3-cationic-1-oxyl-2-pyrrolidine-1-carboxylic ester displays novel cytotoxicity through reactive oxygen species-mediated oxidative damage in MCF-7 and MDAMB-231 cells. Chemico-Biological Interactions, 192, 287–297. DOI: 10.1016/j.cbi.2011.04.006. http://dx.doi.org/10.1016/j.cbi.2011.04.00610.1016/j.cbi.2011.04.006Search in Google Scholar PubMed

[57] Zheng, Y. J., Li, X. W., Li, Y. T., Wu, Z. Y., & Yan, C. W. (2012). Synthesis, structure, anticancer activities, and DNA-binding properties of a 1-D polymeric copper(II) complex alternately bridged by oxamide and terephthalate. Journal of Coordination Chemistry, 65, 3530–3545. DOI: 10.1080/00958972.2012.719609. http://dx.doi.org/10.1080/00958972.2012.71960910.1080/00958972.2012.719609Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0486-6/html
Scroll to top button