Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 68, Issue 4

Issues

Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics

Krunal Shah
  • Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jigisha Parikh
  • Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bharat Dholakiya
  • Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kalpana Maheria
  • Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s11696-013-0488-4

Abstract

Conversion of high free fatty acids (FFA) containing acid oil (AO) to fatty acid methyl esters (FAME) using silica sulfuric acid (SSA) as a solid acid catalyst was investigated. Process parameters such as reaction temperature, reaction time, catalyst loading, and methanol to oil molar ratio were optimized using the Taguchi orthogonal array method. Maximum FFA conversion (97.16 %) was achieved under the optimal set of parameter values viz. 70°C, 4 mass % catalyst loading, and 1: 15 oil to methanol molar ratio after 90 min. SSA was reused three times successfully without a significant loss in activity. Biodiesel produced from AO met the international biodiesel standards. Determination of kinetic parameters proved that the experimental results fit the pseudo first order kinetic law.

Keywords: acid oil; biodiesel; esterification; silica sulfuric acid; Taguchi method

  • [1] Allen, C. A. W., Watts, K. C., Ackman, R. G., & Pegg, M. J. (1999). Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 78, 1319–1326. DOI: 10.1016/s0016-2361(99)00059-9. http://dx.doi.org/10.1016/S0016-2361(99)00059-9CrossrefGoogle Scholar

  • [2] American Oil Chemists’ Society, AOCS (2009a). AOCS official method: Iodine value of fats and oils cyclohexane-acetic acid method. AOCS Cd 1d-92. Urbana, IL, USA. Google Scholar

  • [3] American Oil Chemists’ Society, AOCS (2009b). AOCS official method: Saponification value modified method using methanol. AOCS Cd 3c-91. Urbana, IL, USA. Google Scholar

  • [4] American Society for Testing and Materials, ASTM (2002a). ASTM standard: Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum and liquid petroleum products by hydrometer method. ASTM D1298-99. West Conshohocken, PA, USA. DOI: 10.1520/D1298-99. CrossrefGoogle Scholar

  • [5] American Society for Testing and Materials, ASTM (2002b). ASTM standard: Standard test method for density, relative density, and API gravity of liquids by digital density meter. ASTM D4052-96. West Conshohocken, PA, USA. DOI: 10.1520/D4052-96. CrossrefGoogle Scholar

  • [6] American Society for Testing and Materials, ASTM (2002c). ASTM standard: Standard test method for acid number of petroleum product by potentiometric titration. ASTM D664-95. West Conshohocken, PA, USA. DOI: 10.1520/D0664-95. CrossrefGoogle Scholar

  • [7] American Society for Testing and Materials, ASTM (2002d). ASTM standard: Standard test method for flash and fire point by Cleveland open cup tester. ASTM D92-02. West Conshohocken, PA, USA. DOI: 10.1520/D0092-02. CrossrefGoogle Scholar

  • [8] American Society for Testing and Materials, ASTM (2002e). ASTM standard: Standard test method for pour point of petroleum products. ASTM D97-02. West Conshohocken, PA, USA. DOI: 10.1520/D0097-02. CrossrefGoogle Scholar

  • [9] American Society for Testing and Materials, ASTM (2002f). ASTM standard: Standard test method for cloud point of petroleum products. ASTM D2500-02. West Conshohocken, PA, USA. DOI: 10.1520/D2500-02. CrossrefGoogle Scholar

  • [10] American Society for Testing and Materials, ASTM (2002g). ASTM standard: Standard specification for biodiesel fuel (B100) blend stock for distillate fuels. ASTM D6751-02. West Conshohocken, PA, USA. DOI: 10.1520/D6751-02. CrossrefGoogle Scholar

  • [11] American Society for Testing and Materials, ASTM (2005). ASTM standard: Standard test method for determination of the unsaponifiable nonvolatile matter in sulfated oils. ASTM D5553-95. West Conshohocken, PA, USA. DOI: 10.1520/D5553-95. CrossrefGoogle Scholar

  • [12] American Society for Testing and Materials, ASTM (2006). ASTM standard: Standard test method for fatty acids content of naval stores, including rosin, tall oil, and related products. ASTM D1585-96. West Conshohocken, PA, USA. DOI: 10.1520/D1585-96. CrossrefGoogle Scholar

  • [13] Balat, M., & Balat, H. (2008). A critical review of bio-diesel as a vehicular fuel. Energy Conversion and Management, 49, 2727–2741. DOI: 10.1016/j.enconman.2008.03.016. http://dx.doi.org/10.1016/j.enconman.2008.03.016CrossrefGoogle Scholar

  • [14] Berrios, M., Siles, J., Martin, M. A., & Martin, A. (2007). A kinetic study of esterification of free fatty acids (FFA) in sunflower oil. Fuel, 86, 2383–2388. DOI: 10.1016/j.fuel.2007.02.002. http://dx.doi.org/10.1016/j.fuel.2007.02.002CrossrefGoogle Scholar

  • [15] Brahmkhatri, V., & Patel, A. (2011). 12-Tungstophosphoric acid anchored to SBA-15: An efficient, environmentally benign reusable catalyst for biodiesel production by esterification of free fatty acids. Applied Catalysis A: General, 403, 161–172. DOI: 10.1016/j.apcata.2011.06.027. http://dx.doi.org/10.1016/j.apcata.2011.06.027CrossrefGoogle Scholar

  • [16] Černoch, M., Hájek, M., & Skopal, F. (2010). Relationship among flash point, carbon residue, viscosity and some impurities in biodiesel after ethanolysis of rape-seed oil. Bioresource Technology, 101, 7397–7401. DOI: 10.1016/j.biortech.2010.05.003. http://dx.doi.org/10.1016/j.biortech.2010.05.003CrossrefGoogle Scholar

  • [17] Chen, R. X., Ju, Y. H., & Mou, C. Y. (2007). Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. The Journal of Physical Chemistry C, 111, 18731–18737. DOI: 10.1021/jp0749221. http://dx.doi.org/10.1021/jp0749221CrossrefGoogle Scholar

  • [18] Chen, X., Du, W., & Liu, D. H. (2008). Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40, 423–429. DOI: 10.1016/j.bej.2008.01.012. http://dx.doi.org/10.1016/j.bej.2008.01.012CrossrefGoogle Scholar

  • [19] Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy, 31, 563–568. DOI: 10.1016/j.biombioe.2007.03.001. http://dx.doi.org/10.1016/j.biombioe.2007.03.001CrossrefGoogle Scholar

  • [20] Desai, M. A., & Parikh, J. K. (2012). Hydrotropic extraction of Citral from Cymbopogon flexuosus (Steud.) Wats. Industrial & Engineering Chemistry Research, 51, 3750–3757. DOI: 10.1021/ie202025b. http://dx.doi.org/10.1021/ie202025bCrossrefGoogle Scholar

  • [21] dos Santos Corrąa, I. N., de Souza, S. L., Catran, M., Bernardes, O. L., Figueiredo Portilho, M., & Pereira Langone, M. A. (2011). Enzymatic biodiesel synthesis using byproduct obtained from palm oil refining. Enzyme Research, 2011, 1–8. DOI: 10.4061/2011/814507. CrossrefGoogle Scholar

  • [22] Echim, C., Verhé, R., de Greyt, W., & Stevens, C. (2009). Production of biodiesel from side-stream refining products. Energy & Environmental Science, 2, 1131–1141. DOI: 10.1039/b905925c. http://dx.doi.org/10.1039/b905925cCrossrefGoogle Scholar

  • [23] European Committee for Standardization, CEN (2008). European standard: Automotive fuels — Fatty acid methyl esters (FAME) for diesel engines — Requirements and test methods. EN 14214:2008+A1:2009. Brussels, Belgium. Google Scholar

  • [24] Fang, L., Xing, R., Wu, H. H., Li, X. H., Liu, Y. M., & Wu, P. (2010). Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers. Science China Chemistry, 53, 1481–1486. DOI: 10.1007/s11426-010-3206-x. http://dx.doi.org/10.1007/s11426-010-3206-xCrossrefGoogle Scholar

  • [25] Ghosh, S., & Bhattacharya, D. K. (1995). Utilization of acid oil in making valuable fatty products by microbial lipase technology. Journal of the American Oil Chemist’s Society, 72, 1541–1544. DOI: 10.1007/bf02577851. http://dx.doi.org/10.1007/BF02577851CrossrefGoogle Scholar

  • [26] Guo, F., Xiu, Z. L., & Liang, Z. X. (2012). Synthesis of biodiesel form acidified soybean soapstock using lignin-derived carbonaceous catalysts. Applied Energy, 98, 47–52. DOI: 10.1016/j.apenergy.2012.02.071. http://dx.doi.org/10.1016/j.apenergy.2012.02.071CrossrefGoogle Scholar

  • [27] Haas, M. J., Michalski, P. J., Runyon, S., Nunez, A., & Scott, K. M. (2003). Production of FAME from acid oil, a byproduct of vegetable oil refining. Journal of the American Oil Chemist’s Society, 80, 97–102. DOI: 10.1007/s11746-003- 0658-4. http://dx.doi.org/10.1007/s11746-003-0658-4CrossrefGoogle Scholar

  • [28] Haas, M. J., McAloon, A. J., Yee, W. C., & Foglia, T. A. (2006). A process model to estimate biodiesel production costs. Bioresource Technology, 97, 671–678. DOI: 10.1016/j.biortech.2005.03.039. http://dx.doi.org/10.1016/j.biortech.2005.03.039CrossrefGoogle Scholar

  • [29] Kiss, A. A., Dimian, A. C., & Rothenberg, G. (2006). Solid acid catalysts for biodiesel production — Towards sustainable energy. Advanced Synthesis & Catalysis, 348, 75–81. DOI: 10.1002/adsc.200505160. http://dx.doi.org/10.1002/adsc.200505160CrossrefGoogle Scholar

  • [30] Kulkarni, M. G., & Dalai, A. K. (2006). Waste cooking oil — An economical source for biodiesel: A review. Industrial & Engineering Chemistry Research, 45, 2901–2913. DOI: 10.1021/ie0510526. http://dx.doi.org/10.1021/ie0510526CrossrefGoogle Scholar

  • [31] Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28, 500–518. DOI: 10.1016/j.biotechadv.2010.03.002. http://dx.doi.org/10.1016/j.biotechadv.2010.03.002CrossrefGoogle Scholar

  • [32] Levenspiel, O. (2007). Chemical reaction engineering (3rd ed.). India: Willey India Pvt. Ltd. Google Scholar

  • [33] Li, Y., Zhang, X. D., & Sun, L. (2010). Fatty acid methyl esters from soapstocks with potential use as biodiesel. Energy Conversion and Management, 51, 2307–2311. DOI: 10.1016/j.enconman.2010.04.003. http://dx.doi.org/10.1016/j.enconman.2010.04.003CrossrefGoogle Scholar

  • [34] Lin, L., Zhou, C. S., Saritporn, W., Shen, X. Q., & Dong, M. D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88, 1020–1031. DOI: 10.1016/j.apenergy.2010.09.029. http://dx.doi.org/10.1016/j.apenergy.2010.09.029CrossrefGoogle Scholar

  • [35] Lou, W. Y., Zong, M. H., & Duan, Z. Q. (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology, 99, 8752–8758. DOI: 10.1016/j.biortech.2008.04.038. http://dx.doi.org/10.1016/j.biortech.2008.04.038CrossrefGoogle Scholar

  • [36] Mbaraka, I. K., Radu, D. R., Lin, V. S. Y., & Shanks, B. H. (2003). Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. Journal of Catalysis, 219, 329–336. DOI: 10.1016/s0021-9517(03)00193-3. http://dx.doi.org/10.1016/S0021-9517(03)00193-3CrossrefGoogle Scholar

  • [37] Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 11, 1285–1308. DOI: 10.1039/b902086a. http://dx.doi.org/10.1039/b902086aCrossrefGoogle Scholar

  • [38] Özbay, N., Otkar, N., & Tapan, N. A. (2008). Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel, 87, 1789–1798. DOI: 10.1016/j.fuel.2007.12.010. http://dx.doi.org/10.1016/j.fuel.2007.12.010CrossrefGoogle Scholar

  • [39] Phan, A. N., & Phan T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. DOI: 10.1016/j.fuel.2008.07.008. http://dx.doi.org/10.1016/j.fuel.2008.07.008CrossrefGoogle Scholar

  • [40] Ramachandran, K., Sivakumar, P., Suganya, T., & Renganathan, S. (2011). Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresource Technology, 102, 7289–72893. DOI: 10.1016/j.biortech.2011.04.100. http://dx.doi.org/10.1016/j.biortech.2011.04.100CrossrefGoogle Scholar

  • [41] Ross, P. J. (1996). Taguchi techniques for quality engineering (2nd ed.). New York, NY, USA: McGraw-Hill. Google Scholar

  • [42] Salehi, P., Zolfigol, M. A., Shirini, F., & Baghbanzadeh, M. (2006). Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Current Organic Chemistry, 10, 2171–2189. DOI: 10.2174/138527206778742650. http://dx.doi.org/10.2174/138527206778742650CrossrefGoogle Scholar

  • [43] Shah, K. A., Maheria, K. C., & Parikh, J. K. (2011). Effect of reaction parameters on the catalytic transesterification of cotton-seed oil using silica sulfuric acid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, in press. DOI: 10.1080/15567036.2011.636141. CrossrefGoogle Scholar

  • [44] Shaterian, H. R., Ghashang, M., & Feyzi, M. (2008). Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo[2, 1-b]phthalazine-triones. Applied Catalysis A: General, 345, 128–133. DOI: 10.1016/j.apcata.2008.04.032. http://dx.doi.org/10.1016/j.apcata.2008.04.032CrossrefGoogle Scholar

  • [45] Siti Kartina, A. K., & Nor Suhaila, M. H. (2011). Conversion of waste cooking oil (WCO) and palm fatty acid distillate (PFAD) to biodiesel. In Proceedings of 3rd International Symposium & Exhibition in Sustainable Energy & Environment, June 1–3, 2011 (pp. 42–44). Malacca: Malaysia. DOI: 10.1109/isesee.2011.5977106. Google Scholar

  • [46] Srilatha, K., Kumar, C. R., Devi, B. L. A. P., Prasad, R. B. N., Prasad, P. S. S., & Lingaiah, N. (2011). Efficient solid acid catalysts for esterification of free fatty acids with methanol for the production of biodiesel. Catalysis Science & Technology, 1, 662–668. DOI: 10.1039/c1cy00085c. http://dx.doi.org/10.1039/c1cy00085cCrossrefGoogle Scholar

  • [47] Sun, P. Y., Sun, J., Yao, J. F., Zhang, L. X., & Xu, N. P. (2010). Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chemical Engineering Journal, 162, 364–370. DOI: 10.1016/j.cej.2010.04.064. http://dx.doi.org/10.1016/j.cej.2010.04.064CrossrefGoogle Scholar

  • [48] Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering handbook. Hoboken, NJ, USA: Wiley. Google Scholar

  • [49] Tropecąlo, A. I., Casimiro, M. H., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2010). Esterification of free fatty acids to biodiesel over heteropolyacids immobilized on mesoporous silica. Applied Catalysis A: General, 390, 183–189. DOI: 10.1016/j.apcata.2010.10.007. http://dx.doi.org/10.1016/j.apcata.2010.10.007CrossrefGoogle Scholar

  • [50] Wang, L., Du, W., Liu, D. H., Li, L. L., & Dai, N. M. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43, 29–32. DOI: 10.1016/j.molcatb.2006.03.005. http://dx.doi.org/10.1016/j.molcatb.2006.03.005CrossrefGoogle Scholar

  • [51] Wang, Z. M., Lee, J. S., Park, J. Y., Wu, C. Z., & Yuan, Z. H. (2007). Novel biodiesel production technology from soybean soapstock. Korean Journal of Chemical Engineering, 24, 1027–1030. DOI: 10.1007/s11814-007-0115-6. http://dx.doi.org/10.1007/s11814-007-0115-6CrossrefGoogle Scholar

  • [52] Zhang, L. P, Sheng, B. Y., Xin, Z., Liu, Q., & Sun, S. Z. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresource Technology, 101, 8144–8150. DOI: 10.1016/j.biortech.2010.05.069. http://dx.doi.org/10.1016/j.biortech.2010.05.069CrossrefGoogle Scholar

  • [53] Zhang, Y., Dubé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89, 1–16. DOI: 10.1016/s0960-8524(03)00040-3. http://dx.doi.org/10.1016/S0960-8524(03)00040-3CrossrefGoogle Scholar

  • [54] Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitriles and disulfides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/s0040-4020(01)00960-7. http://dx.doi.org/10.1016/S0040-4020(01)00960-7CrossrefGoogle Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2014-04-01


Citation Information: Chemical Papers, Volume 68, Issue 4, Pages 472–483, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-013-0488-4.

Export Citation

© 2013 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in